Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tính chất trong SGK . Xác định thì đầy cách.
Cách 1 : Chứng minh là giao điểm 2 đường trung tuyến
Cách 2 : Gỉa sử AM là trung tuyến ,G thuộc AM Chứng minh \(GM=\frac{1}{3}AM\)thì là trọng tâm Hoặc tùy
Cách khác là cách nâng cao
Câu 7 :
Tam giác cân, tam giác đều
Câu 8:
Tam giác đều
b) Trung tuyến xuất phát từ đỉnh và đi qua trung điểm của cạnh đối diện.
3 trung tuyến cùng cắt nhau tại 1 điểm là trọng tâm
Vì vậy ko thể nào có trọng tâm nằm ngoài tam giác ( vìTrung tuyến xuất phát từ đỉnh và đi qua trung điểm của cạnh đối diện nó nằm ngoài thì gọi gì là trung tuyến nữa )
suy ra Nam sai
a)\(\Delta ABC\)ĐỀUCÓ CÁC ĐƯỜNG CAO AD ,BE ,CF BẰNG NHAU .TA PHẢI CHỨNG MINH \(\Delta ABC\)ĐỀU.\(\Delta FBC=\Delta ECB\))(ẠNH HUYỀN CẠNH GÓC VUÔNG)SUY RA \(\widehat{B}=\widehat{C}\)CHỨNG MINH TƯƠNG TỰ TA ĐƯỢC\(\widehat{A}=\widehat{C}\)
b)GỌI ĐỘ DÀI MỖI CẠNH TAM GIÁC LÀ X
XÉT\(\Delta ADC\)VUÔNG TẠI D CÓ \(AC^2=AD^2+CD^2\)(ĐỊNH LÝ PI-TA-GO)
TỪ ĐÓ TÍNH ĐƯỢC X=A
A B C E F D
câu 1 chọn D
câu 2 chọn D
câu 3 chọn E tất cả đều đúng
câu 4 chọn B
Câu 1 : C
Câu 2 : D
Câu 3 : D
Câu 4 : B
Câu 5 : Giải :
A B M I A B M I a) b)
Chứng minh :
Xét 2 trường hợp :
- \(M \in AB\) (h.a) Vì MA = MB nên M là trung điểm của đoạn thẳng AB \(\Rightarrow\) M thuộc đường trung trực của đoạn thẳng AB.
- \(M\notin AB\) (h.b) : Kẻ đoạn thẳng nối M với trung điểm \(I\) của đoạn thẳng AB.
Ta có \(\triangle MAI=\triangle MBI\) (c.c.c) \(\Rightarrow\widehat{I_1}=\widehat{I_2}\). Mặt khác \(\widehat{I_1}+\widehat{I_2}=180^0\Rightarrow\widehat{I_1}=\widehat{I_2}=90^0\). Vậy \(MI\) là đường trung trực của đoạn thẳng AB.
Câu 1: (bạn tự vẽ hình nhé)
a) Xét \(\Delta\)BAH và \(\Delta\)CAH :
AHB^ = AHC^ = 90o
AB = AC
ABH^ = ACH^
=> \(\Delta\)BAH = \(\Delta\)CAH (cạnh huyền _ góc nhọn) (2)
=> BH = CH (2 cạnh tương ứng) (1)
Mà BH + CH = BC
<=> 2 * BH = 6
BH = 3 (cm)
ABH^ = ACH^
Áp dụng định lý Py-ta-go vào \(\Delta\)ABH:
BH^2 + AH^2 = AB^2
AH^2 = AB^2 - BH^2 = 5^2 - 3^2 = 25 - 9 = 16 (cm)
\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)
b) Từ (1) => AH là đường trung tuyến của \(\Delta\)BAC
=> A, G, H thẳng hàng.
c) Từ (2) => BAH^ = CAH^ hay BAG^ = CAG^
Xét \(\Delta\)BAG và \(\Delta\)CAG:
AB = AC
BAG^ = CAG^
AG chung
=> \(\Delta\)BAG = \(\Delta\)CAG (c.g.c)
=> ABG^ = ACG^ (2 góc tương ứng)
tam giác đều
- chứng minh tam giác có 3 cạnh = nhau
- chứng minh tam giác có 3 góc = nhau
- chứng minh tam giác có 2 góc = 60*
- chứng minh tam giác cân có 1 góc = 60*
Tam giác đều
- chứng minh tam giác có 3 cạnh = nhau
- chứng minh tam giác có 3 góc = nhau
- chứng minh tam giác có 2 góc = 600
- chứng minh tam giác cân có 1 góc = 600
Xét \(\Delta DAC\)và \(\Delta BAE\) có:\(DA=BA;\widehat{DAC}=\widehat{EAB}\left(=60^0+\widehat{BAC}\right);AC=AE\Rightarrow\Delta DAC=\Delta BAE\left(c.g.c\right)\Rightarrow\widehat{DCA}=\widehat{AEB}\)
Ta có:
\(\widehat{BIC}=\widehat{IEC}+\widehat{ECI}=\widehat{IEC}+\left(\widehat{ICA}+\widehat{ACE}\right)=\left(\widehat{IEC}+\widehat{AEI}\right)+\widehat{ACE}=\widehat{AEC}+\widehat{ACE}=60^0+60^0=120^0\)(Vì \(\widehat{AEB}=\widehat{ACI}\))
\(\Rightarrow\widehat{KIB}=60^0\Rightarrow\Delta KIB\)là tam giác đều \(\Rightarrow\widehat{KBI}=\widehat{BKI}=\widehat{BIK}=60^0;KB=IB\).
Ta có:\(\widehat{KBD}=\widehat{ABD}-\widehat{ABK}=60^0-\widehat{ABK}=\widehat{KBI}-\widehat{KBA}=\widehat{ABI}\)
Xét \(\Delta DKB\) và \(\Delta AIB\) có: \(DB=AB;\widehat{DBK}=\widehat{ABI}\left(cmt\right);KB=IB\Rightarrow\Delta DKB=\Delta AIB\left(c.g.c\right)\)
\(\Rightarrow\widehat{BIA}=\widehat{DKB}=180^0-60^0=120^0\)
\(\Rightarrow\widehat{AIE}=\widehat{AID}=120^0-60^0=60^0\) hay IA là phân giác \(\widehat{DIE}\).
Sai đề rồi bạn.D,E phải nằm ở nửa mặt phẳng nào chứ???
* tam giác đều
- chứng minh tam giác có 3 cạnh = nhau
- chứng minh tam giác có 3 góc = nhau
- chứng minh tam giác có 2 góc = 60*
- chứng minh tam giác cân có 1 góc = 60*
Có tổng cộng 4 cách nha
ngoài 4 cách ấy ra,đang còn một cách nx đó là:2 đường cao vừa là phân giác vừa là trung tuyến
học tốt!