K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

Câu 1: (bạn tự vẽ hình nhé)

a) Xét \(\Delta\)BAH và \(\Delta\)CAH :

AHB^ = AHC^  = 90o                    

AB = AC 

ABH^ = ACH^

=> \(\Delta\)BAH = \(\Delta\)CAH (cạnh huyền _ góc nhọn)                (2)

=> BH = CH (2 cạnh tương ứng)          (1) 

Mà BH + CH = BC

<=> 2 * BH = 6

BH = 3 (cm)

ABH^ = ACH^ 

Áp dụng định lý Py-ta-go vào \(\Delta\)ABH:

BH^2 + AH^2 = AB^2

AH^2 = AB^2 - BH^2 = 5^2 - 3^2 = 25 - 9 = 16 (cm)

\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)

b) Từ (1)  => AH là đường trung tuyến của \(\Delta\)BAC

=> A, G, H thẳng hàng.

c)  Từ (2) => BAH^ = CAH^ hay BAG^ = CAG^ 

Xét \(\Delta\)BAG và \(\Delta\)CAG:

AB = AC 

BAG^ = CAG^ 

AG chung

=> \(\Delta\)BAG = \(\Delta\)CAG (c.g.c)

=> ABG^ = ACG^ (2 góc tương ứng)

6 tháng 8 2017

Cho tam giác ABC cân tại A gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó.CM:

BG<BI<BA

GÓC IBG =góc ICG

Xác định vị trí của điểm M sao cho tổng các độ dài BM+MC có giá trị nhỏ nhất đoạn AB

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DIa/ Chứng minh :∆ DEI = ∆DFIb/ Các góc DIE và góc DIF là những góc gì ?c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.Bài 2Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB.Từ C kẻ CE ⊥ AD.Chứng minh :a)Tam giác ABD là tam giác đều .b)AH = CE.c)EH // AC .Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm....
Đọc tiếp

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI

a/ Chứng minh :∆ DEI = ∆DFI

b/ Các góc DIE và góc DIF là những góc gì ?

c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.

Bài 2

Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = H
B.Từ C kẻ CE ⊥ A
D.Chứng minh :

a)Tam giác ABD là tam giác đều .

b)AH = CE.

c)EH // AC .

Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC

a. Chứng minh tam giác ABC vuông

b) Chứng minh ΔBCD cân

c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC

Bài 4:

Cho ABC cân tại A,  vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.

a) Chứng minh BH =HC.

b) Tính độ dài BH, AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh rằng A, G, H thẳng hàng.

d) Chứng minh ∠ABG = ∠ACG

Bài 5(3,5 điểm)

Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.

a) Tính AB.

b) Chứng minh BC = BE.

c) Tia BC cắt tia EK tại M. So sánh KM và KE.

d) Chứng minh CE // MA

Bài 6:

Cho  ΔABC  vuông  tại  A, đường  phân  giác  BE. Kẻ  EH  vuông  góc  với  BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Bài 7

Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.

a. Chứng minh: BH = HC.

b. Tính độ dài đoạn AH.

c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = G
D.Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF

d) Chứng minh: DB + DG > AB.

Bài 8

 Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.

a) Vẽ hình và ghi GT – KL ?

b) KH = AC

c) BE là tia phân giác của góc ABC ?

d) AE < EC ?

Bài 9

Cho  ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :

a) ΔBNC =   ΔCMB

b) ΔBKC cân tại K

c) MN // BC

Bài 10  Cho ΔABC cân tại A. Gọi M là trung điểm của A
C.Trên tia đối của tia MB lấy điểm D sao cho DM = BM

a. Chứng minh ΔBMC = ΔDMA. Suy ra AD // BC.

b. Chứng minh ΔACD là tam giác cân.

c. Trên tia đối của tia CA lấy điểm E sao cho CA = CE. Chứng minh DC đi qua trung điểm I của BE.

Bài 11  Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 10cm, BC = 12cm.

a) Chứng minh tam giác ABH bằng tam giác ACH.

b) Tính độ dài đoạn thẳng AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh ba điểm A, G, H thẳng hàng.

0
10 tháng 11 2017

Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN

24 tháng 4 2018

A B C H G

a, Xét tam giác ABH và tam giác ACH vuông tại H có:   +, AB = AC ( vì tam giác ABC cân tại A)

                                                                                     +, AH chung

=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm

b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng

c, Vì  tam giác ABH = tam giác ACH => góc BAH = góc CAH

Xét tam giác ABG và tam giác ACG có 

AB = AC ( vì tam giác ABC cân tại A )

góc BAH = góc CAH ( chứng minh trên)

AG chung

=>tam giác ABG = tam giác ACG(c.g.c)

=> góc ABG = góc ACG

24 tháng 4 2018

a)

Ta có tam giác ABC cân tại A ( gt )

Mà AH là đường cao 

Nên AH cũng là đường trung tuyến của tam giác ABC => H là trung điểm BC

=> BH = CH = BC / 2 = 6 / 2 = 3 cm

Xét tam giác AHB vuông tại H 

Ta có : AB= AH2 + BH( Py-ta-go )

            52   = AH2 + 32

=> AH2 = 16

=> AH = 4 cm

b)

Ta có G là trọng tâm của tam giác ABC ( gt )

=> AG là đường trung tuyến ứng với cạnh BC trong tam giác ABC 

mà AH cũng là đường trung tuyến ứng với cạnh BC trong tam giác ABC ( chứng minh ở câu a )

=> A,G,H thẳng hàng

c)

gọi CG cắt AB tại E ; BG cắt BC tại F

vì G là trọng tâm => CE ; BF là đường trung tuyến 

=> E là trung điềm AB ; F là trung điểm AC

Ta có EA = BA / 2 = 5 / 2 = 2,5 cm

AF = AC / 2 = 5 / 2 = 2,5 cm

Xét tam giác AEC và tam giác AFB 

ta có : AE = AF = 2,5

          góc BAC chung 

          AC = AB = 5

Nên 2 tam giác = nhau ( c-g-c )

=> góc ABG = góc ACG ( tương ứng )

23 tháng 4 2016

a. xét tg ABH và tg ACH vuông tại H có 

AB=AC (tg ABC cân tại A)

góc B = góc C (tg ABC cân tại A)

suy ra tg ABH = tg ACH (cạnh huyền-góc nhọn)

=> BH=HC (2 cạnh tương ứng)

b. ta có BC= BH + HC

mà BH=BC => BC/2=6/2=BH=HC=3(cm)

áp dụng định lí Pytago ta có

AB2= AH2 + BH2

=> AH2= AB- BH2 =52 - 32= 25 - 9 = 16

=> AH= căn 16 = 4(cm)

c. AH là 1 đường phân giác vì BH=HC 

vì AH là 1 đoạn thẳng mà G thuộc AH (trọng tâm của tg là điểm mà 3 đường phân giác cắt nhau)

nên A,H,G thẳng hàng

d. xét tg GBH và tg GCH vuông tại H có

HB=HC (cm ở câu a)

GH là cạnh chung

vậy tg GBH = tg GCH (2 cạnh góc vuông)

=> góc GBH= góc GCH (2 góc tương ứng)

ta có:

góc B= góc GBH+ góc ABG

góc C= góc GCH+ góc ACG

mà góc B = góc C(tg ABC cân tại A)

      góc GBH= góc GCH (tg GBH = tg GCH)

nên góc ABG= góc ACG