Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* tam giác đều
- chứng minh tam giác có 3 cạnh = nhau
- chứng minh tam giác có 3 góc = nhau
- chứng minh tam giác có 2 góc = 60*
- chứng minh tam giác cân có 1 góc = 60*
Có tổng cộng 4 cách nha
ngoài 4 cách ấy ra,đang còn một cách nx đó là:2 đường cao vừa là phân giác vừa là trung tuyến
học tốt!
a) Tính chất trong SGK . Xác định thì đầy cách.
Cách 1 : Chứng minh là giao điểm 2 đường trung tuyến
Cách 2 : Gỉa sử AM là trung tuyến ,G thuộc AM Chứng minh \(GM=\frac{1}{3}AM\)thì là trọng tâm Hoặc tùy
Cách khác là cách nâng cao
Câu 7 :
Tam giác cân, tam giác đều
Câu 8:
Tam giác đều
b) Trung tuyến xuất phát từ đỉnh và đi qua trung điểm của cạnh đối diện.
3 trung tuyến cùng cắt nhau tại 1 điểm là trọng tâm
Vì vậy ko thể nào có trọng tâm nằm ngoài tam giác ( vìTrung tuyến xuất phát từ đỉnh và đi qua trung điểm của cạnh đối diện nó nằm ngoài thì gọi gì là trung tuyến nữa )
suy ra Nam sai
a)\(\Delta ABC\)ĐỀUCÓ CÁC ĐƯỜNG CAO AD ,BE ,CF BẰNG NHAU .TA PHẢI CHỨNG MINH \(\Delta ABC\)ĐỀU.\(\Delta FBC=\Delta ECB\))(ẠNH HUYỀN CẠNH GÓC VUÔNG)SUY RA \(\widehat{B}=\widehat{C}\)CHỨNG MINH TƯƠNG TỰ TA ĐƯỢC\(\widehat{A}=\widehat{C}\)
b)GỌI ĐỘ DÀI MỖI CẠNH TAM GIÁC LÀ X
XÉT\(\Delta ADC\)VUÔNG TẠI D CÓ \(AC^2=AD^2+CD^2\)(ĐỊNH LÝ PI-TA-GO)
TỪ ĐÓ TÍNH ĐƯỢC X=A
A B C E F D
a) Xét \(\Delta\)ADI và \(\Delta\)AHI có:
AD = AH (gt)
DI = HI (gt)
AI: cạnh chung
Do đó \(\Delta\)ADI = \(\Delta\)AHI (c.c.c)
b) Xét \(\Delta\)AHC vuông tại D và \(\Delta\)ABC vuông tại A có ^C chung nên ^HAC = ^B
\(\Delta\)ABC vuông tại A có ^C = 300 nên ^B = 600
Vậy ^HAC = 600
\(\Delta\)AHD có ^HAC = 600 và AH = AD nên \(\Delta\)AHD đều (đpcm)
c) \(\Delta\)ADI = \(\Delta\)AHI (cmt) suy ra ^DAI = ^HAI (hai góc tương ứng)
Xét \(\Delta\)ADK và \(\Delta\)AHK có:
AD = AH (gt)
^DAI = ^HAI (cmt)
AK: cạnh chung
Do đó \(\Delta\)ADK = \(\Delta\)AHK (c.g.c)
=> ^ADK = ^AHK = 900 (hai góc tương ứng)
Kết hợp với AB vuông góc AC suy ra AB//KD (đpcm)
d) Chứng minh được: \(\Delta\)AHB = \(\Delta\)EHK (c.g.c)
=> ^HAB = ^HEK => KE // AB
Khi đó qua K có hai đường thẳng KD, KE song song với AB (trái với tiên đề Ơ - cơ - lít)
Vậy KD trùng KE hay D,K,E thẳng hàng (đpcm)
có mk kết bn mk chỉ cho
chỉ có 1 cách đơn giản mà nhớ lâu: nhìn hình tao thấy