K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chỉ có 1 cách đơn giản mà nhớ lâu: nhìn hình tao thấy

* tam giác đều 
- chứng minh tam giác có 3 cạnh = nhau 
- chứng minh tam giác có 3 góc = nhau 
- chứng minh tam giác có 2 góc = 60* 
- chứng minh tam giác cân có 1 góc = 60* 

Có tổng cộng 4 cách nha

6 tháng 4 2019

ngoài 4 cách ấy ra,đang còn một cách nx đó là:2 đường cao vừa là phân giác vừa là trung tuyến

học tốt!

2 tháng 5 2019

a) Tính chất trong SGK . Xác định thì đầy cách.

Cách 1 : Chứng minh là giao điểm 2 đường trung tuyến

Cách 2 : Gỉa sử AM là trung tuyến ,G thuộc AM Chứng minh  \(GM=\frac{1}{3}AM\)thì là trọng tâm Hoặc tùy

Cách khác là cách nâng cao

Câu 7 :

Tam giác cân, tam giác đều 

Câu 8:

Tam giác đều 

2 tháng 5 2019

b) Trung tuyến xuất phát từ đỉnh và đi qua trung điểm của cạnh đối diện. 

3 trung tuyến cùng cắt nhau tại 1 điểm là trọng tâm

Vì vậy ko thể nào có trọng tâm nằm ngoài tam giác ( vìTrung tuyến xuất phát từ đỉnh và đi qua trung điểm của cạnh đối diện nó nằm ngoài thì gọi gì là trung tuyến nữa  ) 

suy ra Nam sai 

28 tháng 11 2015

BÀI NÀY KHÓ QUÁ, MK MỚI HỌC LỚP 5, KO BIẾT LÀM ĐÂU, SORRY BẠN !!!!

15 tháng 12 2019

a)\(\Delta ABC\)ĐỀUCÓ CÁC ĐƯỜNG CAO AD ,BE ,CF BẰNG NHAU .TA PHẢI CHỨNG MINH \(\Delta ABC\)ĐỀU.\(\Delta FBC=\Delta ECB\))(ẠNH HUYỀN CẠNH GÓC VUÔNG)SUY RA \(\widehat{B}=\widehat{C}\)CHỨNG MINH TƯƠNG TỰ TA ĐƯỢC\(\widehat{A}=\widehat{C}\)

b)GỌI ĐỘ DÀI MỖI CẠNH TAM GIÁC LÀ X

XÉT\(\Delta ADC\)VUÔNG TẠI D CÓ \(AC^2=AD^2+CD^2\)(ĐỊNH LÝ PI-TA-GO)

TỪ ĐÓ TÍNH ĐƯỢC X=A

A B C E F D

27 tháng 2 2020

a) Xét \(\Delta\)ADI và \(\Delta\)AHI có:

     AD = AH (gt)

     DI = HI (gt)

    AI: cạnh chung

Do đó \(\Delta\)ADI = \(\Delta\)AHI (c.c.c)

b) Xét \(\Delta\)AHC vuông tại D và \(\Delta\)ABC vuông tại A có ^C chung nên ^HAC = ^B

\(\Delta\)ABC vuông tại A có ^C = 300 nên ^B = 600

Vậy ^HAC = 600

\(\Delta\)AHD có ^HAC = 600 và AH = AD nên \(\Delta\)AHD đều (đpcm)

c)  \(\Delta\)ADI = \(\Delta\)AHI (cmt) suy ra ^DAI = ^HAI (hai góc tương ứng)

Xét \(\Delta\)ADK và \(\Delta\)AHK có:

     AD = AH (gt)

     ^DAI = ^HAI (cmt)

    AK: cạnh chung

Do đó  \(\Delta\)ADK = \(\Delta\)AHK (c.g.c)

=> ^ADK = ^AHK = 900 (hai góc tương ứng)

Kết hợp với AB vuông góc AC suy ra AB//KD (đpcm)

d) Chứng minh được: \(\Delta\)AHB = \(\Delta\)EHK (c.g.c)

=> ^HAB = ^HEK => KE // AB

Khi đó qua K có hai đường thẳng KD, KE song song với AB (trái với tiên đề Ơ - cơ - lít)

Vậy KD trùng KE hay D,K,E thẳng hàng (đpcm)