Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Thay sao vào ta được các số thỏa mãn là: 53; 59; 97
2) a) Với k = 0 thì 3 . k = 0, không là số nguyên tố, loại
Với k = 1 thì 3 . k = 3 . 1 = 3, là số nguyên tố, chọn
Với k > 1 thì k sẽ có ít nhất 3 ước khã nhau là: 1; 3 và k, không là số nguyên tố, loại
Vậy k = 1
b) lm tương tự câu a
3) Thay sao vào ta được các số thỏa mãn là: 10; 12; 14; 15; 16; 18; 30; 32; 33; 34; 35; 36; 38; 39
a)Ta có: n2+18n=n.(n+18)
Ư(n2+18n)={1,n,n+18,n.(n+18)}
Để n2+18n là số nguyên tố
=>Ư(n2+18n)={1,n.(n+18)}
=>n=1 hoặc n+18=1
Vì n+18>n
=>n=1
Vậy n=1
nếu p = 2 thì 7p + 9 = 14 + 9 = 23 (thỏa mãn)
Nếu p>2 vì p là số nguyên tố nên p là số lẻ vậy p = 2k + 1 (k\(\in\)N)
⇒ 7p + 9 = 7.(2k+1) + 9 = 14k + 7+ 9 = 14k + 16 ⋮ 2 (loại)
Vậy p = 2
Với \(p\ge3\)do \(p\)là số nguyên tố khi đó \(p\)là số lẻ nên \(35p+9\)là số chẵn mà \(35p+9>2\)nên khi đó \(35p+9\)là hợp số.
Với \(p=2\): \(35p+9=79\)là số nguyên tố.
Vậy \(p=2\).