Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lan Hương ơi !!! M đố mấy bài này thì bố thằng nào làm nổi toàn câu khó.
T chịu luôn , t không biết.
Trả lời:
Gọi 3 số nguyên tố đó là a,b,c
Ta có: abc =5(a+b+c)
=> abc chia hết cho 5, do a,b,c nguyên tố
=> chỉ có trường hợp 1 trong 3 số =5, giả sử là a =5
=> bc = b+c +5 => (b-1)(c-1) = 6
{b-1 =1 => b=2; c-1 =6 => c=7
{b-1=2, c-1=3 => c=4 (loại)
Vậy 3 số nguyên tố đó là 2, 5, 7
2>
Với p=3 thì 2p+1 =7, 4p+1 = 13 là các số nguyên tố
Với p>3
* Do p nguyên tố nên ko chia hết cho 3
Nếu p = 3k +1 => 2p + 1 = 6k +3 chia hết cho 3
=> ko tồn tại số nguyên tố dạng 3k+1
Nếu p = 3k +2 => 4p + 1 = 12k +9 chia hết cho 3
=> ko tồn tại số nguyên tố dạng 3k+2
Vậy p=3 là duy nhất
Đặt m là ƯC(2p-1;4p-1)
Theo bài ra ta có:
2p-1 chia hết cho m
4p-1 chia hết cho m
2(2p-1) chia hết cho m
=>
4p-1 chia hết cho m
4p-2 chia hết cho m
=>
4p-1 chia hết cho m
=> (4p-2) - (4p-1) chia hết cho m
=> 1 chia hết cho m
=> m=1
Vậy m=1
Giải:
Ta phân tích số 2100:
\(2100=23.3.7.52\)
=>Số 2100 chia hết cho các số nguyên tố \(2;3;5;7\)
Vì \(2100=2^2.3.5^5.7\)
nên 2100 chia hết các thừa số nguyên tố là 2;3;5;7
Giải:
a) Mọi số nguyên tố p lớn hơn 2 đều không chia hết cho 2 ---> p có dạng 2k+1 (k thuộc N, k > 0)
...Xét 2 TH :
...+ k chẵn (k = 2n) ---> p = 2k+1 = 2.2n + 1 = 4n+1
...+ k lẻ (k = 2n-1) ---> p = 2k+1 = 2.(2n-1) + 1 = 4n-1
...Vậy p luôn có dạng 4n+1 hoặc 4n-1
b) Mọi số nguyên tố p lớn hơn 3 đều ko chia hết cho 3 ---> p có dạng 3k+1 hoặc 3k-1
...Nếu k lẻ thì p sẽ chẵn và nó ko phải là số nguyên tố (vì p > 3).
...Vậy k phải chẵn, k = 2n với n > 0 (để p > 3).Xét 2 TH :
...+ p = 3k+1 = 3.2n + 1 = 6n+1
...+ p = 3k-1 = 3.2n -1 = 6n - 1
...Vậy p luôn có dạng 6n+1 hoặc 6n-1.
Cách 2:
a) Mỗi số tự nhiên chia cho 4 có thể dư 0; 1;2;3
=> có thể có các dạng sau: 4n - 1; 4n ; 4n + 1 ; 4n + 2
Vì p là số nguyên tố nên p > 2 nên p lẻ => p không thể bằng 4n hoặc 4n + 2
Vậy p có thể có dạng 4n - 1 hoặc 4n + 1
b) Tương tự, mọi số tự nhiên đều có thể viết dạng: 6n - 2; 6n - 1; 6n ; 6n + 1; 6n + 2; 6n + 3
Vì p là số nguyên tố > 3 => p không chia hết cho 2 và 3
=> p không thể = 6n - 2; 6n; 6n + 2 ; 6n + 3
Vậy p có thể có dạng 6n - 1 hoặc 6n + 1
a)Ta có:
5.4.7 +516 =5.4.7+4.129=4.(5.7+129) chia hết cho 4
=>5.4.7+516 là hợp số
b)ta có:
25.2-9.5 =5.5.2-9.5=5.(5.2-9) chia hết cho 5
=>25.2-9.5 là hợp số
nếu p = 2 thì 7p + 9 = 14 + 9 = 23 (thỏa mãn)
Nếu p>2 vì p là số nguyên tố nên p là số lẻ vậy p = 2k + 1 (k\(\in\)N)
⇒ 7p + 9 = 7.(2k+1) + 9 = 14k + 7+ 9 = 14k + 16 ⋮ 2 (loại)
Vậy p = 2
Để 7P +9 là số nguyên tố khi P=9-7=2