Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $xy=a; x+y=b$ thì ta có: \(\left\{\begin{matrix} b^2-2a=4\\ b^2\geq 4a\end{matrix}\right.\)
$A=\frac{xy}{x+y+2}=\frac{a}{b+2}=\frac{b^2-4}{2(b+2)}=\frac{b-2}{2}$
Từ $b^2\geq 4a$. Thay $4a=2(b^2-4)$ có:
$b^2\geq 2(b^2-4)$
$\Leftrightarrow b^2\leq 8\Rightarrow b\leq 2\sqrt{2}$
Do đó: $A=\frac{b-2}{2}\leq \frac{2\sqrt{2}-2}{2}=\sqrt{2}-1$
Vậy $A_{\max}=\sqrt{2}-1$
ĐẶt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) ( cho dễ nhìn thôi ko có ý j cả :) )
Áp dụng BĐT AM-GM ta có:
\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}=\frac{1}{2\sqrt{bc}}\)
Tương tự cho 2 BĐT còn lại rồi cộng lại :
\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Lại theo AM-GM có
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) khi đó
\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)
Xảy ra khi \(a=b=c=1\)
Ta có \(\left(x+y\right)xy=x^2-xy+y^2\)
=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)
MÀ \(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2,\frac{1}{xy}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^{^2}\)
=> \(\frac{1}{x}+\frac{1}{y}\le4\)
\(A=\frac{1}{x^3}+\frac{1}{y^3}=\frac{x^3+y^3}{x^3y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)
Vậy MaxA=16 khi x=y=1/2
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
A = \(\frac{xy}{x+y+2}=\frac{1}{\frac{1}{y}+\frac{1}{x}+\frac{2}{xy}}\)
TA đi tìm Min mẫu
CM BĐT \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\) ( với a ; b ;m; n > 0 ) ( tự làm nha)
\(\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\ge\frac{\left(1+1\right)^2}{x+y}+\frac{\left(\sqrt{2}\right)^2}{xy}\ge\frac{\left(1+1+\sqrt{2}\right)^2}{x+y+xy}=\frac{\left(2+\sqrt{2}\right)^2}{x+y+xy}\)
(*) tìm max cái mẫu
ta có : \(\left(x-y\right)^2\ge0\) với mọi x ; y => \(x^2+y^2\ge2xy\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Leftrightarrow2\sqrt{2}\ge x+y\)
\(\left(x-y\right)^2\ge0\Leftrightarrow xy\le\frac{x^2+y^2}{2}=\frac{4}{2}=2\)
=> x +y + xy \(\le2\sqrt{2}+2\) => \(\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\ge\frac{\left(2+\sqrt{2}\right)^2}{2\sqrt{2}+2}=\sqrt{2}+1\)
=> A \(\le\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Dấu ''='' xảy ra khi x = y= căn 2
Tìm Min nhầm :((
À Tìm Max đúng r :))