\(x^2+y^2+xy=1\)

tìm min , max của ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2019

\(P=\frac{P}{1}=\frac{2x^2-xy+7y^2}{x^2+y^2+xy}\)

Từ điều kiện đề bài ta có \(xy\ne0\)

- Với \(y=0\Rightarrow P=2\)

- Với \(y\ne0\), chia cả tử và mẫu cho \(y^2\) ta được
\(P=\frac{2\left(\frac{x}{y}\right)^2-\frac{x}{y}+7}{\left(\frac{x}{y}\right)^2+\frac{x}{y}+1}=\frac{2a^2-a+7}{a^2+a+1}\) với \(a=\frac{x}{y}\)

\(\Rightarrow Pa^2+Pa+P=2a^2-a+7\)

\(\Leftrightarrow\left(P-2\right)a^2+\left(P+1\right)a+P-7=0\)

\(\Delta=\left(P+1\right)^2-4\left(P-2\right)\left(P-7\right)=-3P^2+38P-55\)

\(\Delta\ge0\Rightarrow\frac{5}{3}\le P\le11\)

21 tháng 4 2020

\(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=2-a\\x^2+y^2+xy=3\end{cases}\left(a\ge0\right)}}\)

Do đó: \(\hept{\begin{cases}x+y=2-a\\xy=\left(2-a\right)^2-3\end{cases}}\)

Điều kiện có nghiệm là: \(\Delta=S^2-4P\ge0\)và a>=0 nên 0 =<a =< 4

Ta có: \(T=x^2+y^2+xy-2xy=9-2\left(2-a\right)^2\)

=> \(Min_T=1\)khi x=1 và y=1 hoặc x=-1; y=-1

\(Max_T=9\)khi \(x=\sqrt{3};y=-\sqrt{3}\)hoặc \(x=-\sqrt{3};y=\sqrt{3}\)

21 tháng 10 2020

Tìm Min nhầm :((

21 tháng 10 2020

À Tìm Max đúng r :))

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

27 tháng 5 2018

Từ đề bài \(\Rightarrow4x^2+4y^2+4xy-24x-24y+44=0\)

\(\Leftrightarrow\left(2x+y\right)^2-24x-12y+36+3y^2-12y+12-4=0\)

\(\Leftrightarrow\left(2x+y-6\right)^2+3\left(y-2\right)^2-4=0\)

\(\Leftrightarrow\left(2x+y-6\right)^2=4-3\left(y-2\right)^2\le4\forall x;y\)

\(\Leftrightarrow-2\le2x+y-6\le2\Rightarrow4\le2x+y\le8\)

Do đó \(4\le P\le8\)

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

Đặt $xy=a; x+y=b$ thì ta có: \(\left\{\begin{matrix} b^2-2a=4\\ b^2\geq 4a\end{matrix}\right.\)

$A=\frac{xy}{x+y+2}=\frac{a}{b+2}=\frac{b^2-4}{2(b+2)}=\frac{b-2}{2}$
Từ $b^2\geq 4a$. Thay $4a=2(b^2-4)$ có:

$b^2\geq 2(b^2-4)$

$\Leftrightarrow b^2\leq 8\Rightarrow b\leq 2\sqrt{2}$

Do đó: $A=\frac{b-2}{2}\leq \frac{2\sqrt{2}-2}{2}=\sqrt{2}-1$

Vậy $A_{\max}=\sqrt{2}-1$