Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $xy=a; x+y=b$ thì ta có: \(\left\{\begin{matrix} b^2-2a=4\\ b^2\geq 4a\end{matrix}\right.\)
$A=\frac{xy}{x+y+2}=\frac{a}{b+2}=\frac{b^2-4}{2(b+2)}=\frac{b-2}{2}$
Từ $b^2\geq 4a$. Thay $4a=2(b^2-4)$ có:
$b^2\geq 2(b^2-4)$
$\Leftrightarrow b^2\leq 8\Rightarrow b\leq 2\sqrt{2}$
Do đó: $A=\frac{b-2}{2}\leq \frac{2\sqrt{2}-2}{2}=\sqrt{2}-1$
Vậy $A_{\max}=\sqrt{2}-1$
\(P=\frac{x\left(x+y+z\right)+yz}{y+z}+\frac{y\left(x+y+z\right)+zx}{z+x}+\frac{z\left(x+y+z\right)+xy}{x+y}\)
\(P=\frac{\left(x+y\right)\left(x+z\right)}{y+z}+\frac{\left(x+y\right)\left(y+z\right)}{z+x}+\frac{\left(x+z\right)\left(y+z\right)}{x+y}\)
\(P\ge\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=2\left(x+y+z\right)=2\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
ĐKXĐ : \(x,y>0\)
a/ \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}+\frac{x+y}{\sqrt{xy}}\right)\)
\(=\left(\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right).\sqrt{x}}-\frac{y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}.\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{-\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{-\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x+y}=\sqrt{y}-\sqrt{x}\)
b/ Ta có ; \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)
\(\Rightarrow B=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)
Bài 1:
\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)
\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)
\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)
\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)
\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)
\(\Rightarrow C=\sqrt{14}\)
\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)
\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)
Bài 2:
a) Bạn xem lại đề.
b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)
c)
\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)
\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)
+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)
+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)
\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)
+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Áp dụng bđt Bunhiacopxki
\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)
\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)
(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Tương tự: \(xy^2+yz^2+zx^2\le3\)
\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)
\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)
\(A=\frac{xy}{x+y+2}\)