Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay a^3+b^3=(a+b)^3 -3ab(a+b) .
Ta có :a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)=0
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
Luôn đúng do a+b+c=0
Trả lời
bạn vào câu hỏi tương tự nha
link đây
Câu hỏi của Trần Thanh Hà - Toán lớp 8 | Học trực tuyến
Mk sẽ gửi lại link vào vào tin nhắn cho bạn
Study ưell
nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)
Em ko chắc đâu nha! Mới học dạng này thôi ak.. Với cả em phải thêm đk mới giải đc:(
Thêm đk a, b, c > 0
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(p;q;r\right)\) thì \(p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)
Cần chứng minh: \(1+3r\ge p^3-3pq+3r\Leftrightarrow p^3-3pq\le1\)(*)
Ta có \(LHS_{\text{(*)}}=p\left(p^2-2q-q\right)=p\left(1-q\right)=p\left(1-\frac{p^2-1}{2}\right)\)
\(=p-\frac{p^3-p}{2}=\frac{3p-p^3}{2}=\frac{-\left(p-1\right)^2\left(p+2\right)}{2}+1\le1\)
Đẳng thức xảy ra khi (a;b;c) = (0;0;1) và các hoán vị của nó (em chả biết giải thích thế nào nữa:(
Sửa đề: a^3+b^3+c^3=3abc
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
=>ĐPCM
Không mất tính tổng quát giả sử \(a\ge b\ge c\)
\(a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
\(\Leftrightarrow a\left(a-b\right)\left(a-c\right)+b\left(b-c\right)\left(b-a\right)+c\left(c-a\right)\left(c-b\right)\ge0\) (đúng)
Hoặc nó tương đương \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\dfrac{2b}{2}=b\)
Tương tự rồi nhân theo vế cũng thu được ĐPCM
`a^3+b^3+c^3=3abc(***)`
`a^3+b^3+c^3-3abc=0`
`<=>a^3+3ab(a+b)+c^3-3ab(a+b)-3abc=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+2ab-ac-bc)-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ac-bc-ab)=0`
Luôn đúng với `a+b+c=0`
`=>(***)` được chứng minh.
Ta có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)(đpcm)