K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

`a^3+b^3+c^3=3abc(***)`

`a^3+b^3+c^3-3abc=0`

`<=>a^3+3ab(a+b)+c^3-3ab(a+b)-3abc=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+2ab-ac-bc)-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ac-bc-ab)=0`

Luôn đúng với `a+b+c=0`

`=>(***)` được chứng minh.

Ta có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)(đpcm)

21 tháng 8 2019

Thay a^3+b^3=(a+b)^3 -3ab(a+b) .

Ta có :a^3+b^3+c^3-3abc=0

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0

<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)=0

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0

Luôn đúng do a+b+c=0

Trả lời 

bạn vào câu hỏi tương tự nha 

link đây

Câu hỏi của Trần Thanh Hà - Toán lớp 8 | Học trực tuyến

Mk sẽ gửi lại link vào vào tin nhắn cho bạn 

Study ưell

20 tháng 10 2017

nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)

1 tháng 3 2020

Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c
                             =(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0
Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c
Vậy a=b=c

22 tháng 9 2019

Em ko chắc đâu nha! Mới học dạng này thôi ak.. Với cả em phải thêm đk mới giải đc:(

Thêm đk a, b, c > 0

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(p;q;r\right)\) thì \(p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)

Cần chứng minh: \(1+3r\ge p^3-3pq+3r\Leftrightarrow p^3-3pq\le1\)(*)

Ta có \(LHS_{\text{(*)}}=p\left(p^2-2q-q\right)=p\left(1-q\right)=p\left(1-\frac{p^2-1}{2}\right)\)

\(=p-\frac{p^3-p}{2}=\frac{3p-p^3}{2}=\frac{-\left(p-1\right)^2\left(p+2\right)}{2}+1\le1\)

Đẳng thức xảy ra khi (a;b;c) = (0;0;1) và các hoán vị của nó (em chả biết giải thích thế nào nữa:(

22 tháng 9 2019

À không cần đk a, b, c > 0. Vì ta có:

\(1=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow3\ge\left(a+b+c\right)^2\)

\(\Rightarrow\sqrt{3}\ge a+b+c\ge-\sqrt{3}>-2\)

Như vậy \(a+b+c+2>0\Rightarrow p+2>0\) và bđt cuối là đúng!

23 tháng 12 2021

Sửa đề: a^3+b^3+c^3=3abc

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

=>ĐPCM

1 tháng 9 2017

Không mất tính tổng quát giả sử \(a\ge b\ge c\)

\(a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

\(\Leftrightarrow a\left(a-b\right)\left(a-c\right)+b\left(b-c\right)\left(b-a\right)+c\left(c-a\right)\left(c-b\right)\ge0\) (đúng)

Hoặc nó tương đương \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\dfrac{2b}{2}=b\)

Tương tự rồi nhân theo vế cũng thu được ĐPCM