Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK:tự xác định
\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)
b nghiệm xấu quá để mình xem lại :v
\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)
\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)
đến đây thì chịu
tìm đc 1 nghiệm là -1;1,nên bình phương lên
Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1
Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)
<=> \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)
<=> \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)
Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm
Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)
Vậy pt có 1 nghiệm x= 1.
Ta giải pt bậc ba theo công thức Cardano:
\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)
Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)
\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)
Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)
Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)
Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.
Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.
\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)
Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.
phương trình \(\Leftrightarrow2x^2\left(x+1003\right)^2+\left(\sqrt{2x+2007}-1\right)^2=0\)
x^4+2006^x^3+1006009x^2=-x+\(\sqrt{2x+2007}\)-1004
x^2(x+1003)^2=-x+2\(\sqrt{2x+2007}\)-1004
2x^2(x+1003)^2=-2x-2007+2\(\sqrt{2x+2007}\)-1 rồi tách hđt 1 vế âm 1 vế dương
- \(\sqrt{\frac{2ab^2}{162a}}=\sqrt{\frac{b^2}{81}}=\frac{|b|}{9}\)
- \(2y^2\sqrt{\frac{x^4}{4y^2}}=\frac{2y^2x^2}{-2y}=-yx^2\)
a.\(DK:\frac{2}{3}\le x< 4\)
b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\)
c.\(DK:x\le-3\)
Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
\(pt\Rightarrow x>0\)
\(pt\Leftrightarrow\sqrt{x^4-x^2+4}-\frac{25}{7}x+\sqrt{x^4-2x^2+4}-\frac{24}{7}x=0\)
\(\Leftrightarrow\frac{x^4-x^2+4-\left(\frac{25}{7}\right)x^2}{\sqrt{...}+\frac{25}{7}x}+\frac{x^4-2x^2+4-\left(\frac{24}{7}\right)x^2}{\sqrt{....}+\frac{24}{7}x}=0\)
\(\Leftrightarrow\left(x^4-\frac{674}{49}x^2+4\right)\left(\frac{1}{\sqrt{...}+\frac{25}{7}x}+\frac{1}{\sqrt{...}+\frac{24}{7}x}\right)=0\)
\(\Leftrightarrow x^4-\frac{674}{49}x^2+4=0\)
Dễ thấy x = 0 ko là nghiệm của pt , chia cả hai vế cho x ta đc :
\(\sqrt{x^2-1+\frac{4}{x^2}}+\sqrt{x^2-2+\frac{4}{x^2}}=7\)
Đăỵ \(x^2+\frac{4}{x^2}-1=t\)
pt <=> \(\sqrt{t}+\sqrt{t-1}=7\) Giải pt ẩn t => ẩn x thay vào xem có tM ko rồi kl