Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Mình sẽ chứng minh bằng phản chứng :)
Giả sử rằng trong 100 số đó không tồn tại hai số nào bằng nhau, khi đó không mất tính tổng quát, ta gọi \(a_i< a_{i+1}....\) với \(i=\overline{1,100}\)
Bằng cách giả sử như vậy, ta có thể đặt \(a_i\ge i\)
Ta có : \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\ge\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..+\frac{1}{\sqrt{100}}\)
Ta chứng minh bài toán phụ : Với n là số tự nhiên lớn hơn 0 thì \(\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Thật vậy : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Áp dụng với n = 1,2,...,100 được :
\(A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)
\(=2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=18\)
Mình làm đến đây nhưng không biết vì sao nó lại chưa chặt, có ai có cách khác không?
Giả sử a1, a2, ..., a100 là 100 số khác nhau thì
\(P=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)
Ta chứng minh với mọi n ≥ 2 thì
\(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
Ta có: \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}\)
\(=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)
\(=1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=1+2\left(\sqrt{100}-1\right)=19\)
\(\Rightarrow P< 19\)
Vậy nếu như a1, a2, ..., a100 là 100 số tự nhiên khác nhau thì tổng P luôn luôn < 19.
Nên để tổng P = 19 thì phải có ít nhất 2 trong 100 số đó phải bằng nhau
Dk: x\(\ge0\)
lien hop
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=1\)