K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2023

\(\sqrt{x^2-6x+9}+2x=4\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=4-2x\)

\(\Leftrightarrow\left|x-3\right|=4-2x\)

\(\left|x-3\right|=\left\{{}\begin{matrix}4-2xkhix\ge2\\-4+2xkhix< 2\end{matrix}\right.\)

Với \(x\ge2\Rightarrow x-3=4-2x\Rightarrow3x=7\Rightarrow x=\dfrac{7}{3}\left(tm\right)\)

Với \(x< 2\Rightarrow x-3=-4+2x\Rightarrow-x=-1\Rightarrow x=1\left(tm\right)\)

Vậy \(S=\left\{-1;\dfrac{7}{3}\right\}\)

12 tháng 6 2023

ĐKXĐ: `x\inRR`

`pt<=>sqrt(x^2-6x+9)=4-2x`

`<=>sqrt((x-3)^2)=4-2x`

`<=>|x-3|=4-2x(**)`

Ta thấy rằng `VT(**)>=0AAx\inRR` nên `4-2x>=0<=>x<=2`

Khi đó `|x-3|=3-x`

Suy ra `3-x=4-2x`

`<=>x=1(TM)`

Vậy `S={1}`

8 tháng 7 2017

a)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)

\(\Leftrightarrow\left(\sqrt{x^2-2x+1}-3\right)-\left(\sqrt{x^2-4x+4}-2\right)=x-3-1\)

\(\Leftrightarrow\frac{x^2-2x+1-9}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x+4-4}{\sqrt{x^2-4x+4}+2}=x-4\)

\(\Leftrightarrow\frac{x^2-2x-8}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-4\right)}{\sqrt{x^2-2x+1}+3}-\frac{x\left(x-4\right)}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1\right)=0\)
Dễ thấy: \(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1< 0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

b)\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)

\(\Leftrightarrow\left(\sqrt{x^2-6x+9}-\frac{7}{2}\right)-\left(\sqrt{x^2+6x+9}-\frac{5}{2}\right)=0\)

\(\Leftrightarrow\frac{x^2-6x+9-\frac{49}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{x^2+6x+9-\frac{25}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\frac{\frac{4x^2-24x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{4x^2+24x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\frac{\frac{\left(2x-13\right)\left(2x+1\right)}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{\left(2x+1\right)\left(2x+11\right)}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}\right)=0\)

Dễ thấy: \(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}< 0\)

\(\Rightarrow2x+1=0\Rightarrow x=-\frac{1}{2}\)

c)Áp dụng BĐT CAuchy-Schwarz ta có:

\(P^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)

\(\le\left(1+1\right)\left(x-2+4-x\right)\)

\(=2\cdot\left(x-2+4-x\right)=2\cdot2=4\)

\(\Rightarrow P^2\le4\Rightarrow P\le2\)

20 tháng 10 2018

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

18 tháng 9 2018

a) điều kiện xác định : \(x\ge1\)

ta có : \(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-3=\dfrac{2}{3}\sqrt{x-1}\)

\(\Leftrightarrow\dfrac{1}{6}\sqrt{x-1}=-3\left(vôlí\right)\) vậy phương trình vô nghiệm

b) điều kiện xác định \(x\ge3\)

ta có : \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}=x-3\) \(\Leftrightarrow\left|x-2\right|+\left|x+3\right|=x-3\)

\(\Leftrightarrow x-2+x+3=x-3\Leftrightarrow x=-4\left(L\right)\) vậy phương trình vô nghiệm

c) điều kiện xác định : \(\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\x< 1\end{matrix}\right.\)

ta có : \(\sqrt{\dfrac{2x-3}{x-1}}=2\) \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tmđk\right)\) vậy \(x=\dfrac{1}{2}\)

8 tháng 8 2019

\(\sqrt{x^2-6x+9}-\sqrt{x^2-2x+1}=\sqrt{x^2}\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-1\right)^2}=x\)

\(\Rightarrow x-3-x+1-x=0\)

\(\Rightarrow-x=2\Rightarrow x=-2\)

Vậy......

8 tháng 8 2019

\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-1\right)^2}=\sqrt{x^2}\)

\(\Leftrightarrow\left|x-3\right|-\left|x-1\right|-\left|x\right|=0\)

Xét \(x< 0\Leftrightarrow3-x+x-1+x=0\)

               \(\Leftrightarrow x=-2\)(tm)

Xét \(0\le x< 1\)\(\Leftrightarrow3-x+x-1-x=0\)

                         \(\Leftrightarrow x=1\left(l\right)\)

Xét \(1< x\le3\Leftrightarrow3-x-x+1-x=0\)

                      \(\Leftrightarrow4=3x\Leftrightarrow x=\frac{4}{3}\)(tm)

Xét \(x\ge3\Leftrightarrow x-3-x+1-x=0\)

              \(\Leftrightarrow x=-1\left(l\right)\)

6 tháng 7 2019

\(a,\sqrt{x-2\sqrt{x}-1}-\sqrt{x-1}=1.\)

\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{x-1}=1\)

\(\Rightarrow x-1-\sqrt{x-1}=1\)

\(\Rightarrow\sqrt{x-1}=x-1+1\)

\(\Rightarrow x-1=x^2\Rightarrow x^2-x+1=0\) ( vô nghiệm vì nó luôn lớn hơn 0 )

6 tháng 7 2019

\(đkxđ\Leftrightarrow2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)

\(c,\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}.\)

\(\Rightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Rightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)

\(\Rightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Rightarrow\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\)

\(\Rightarrow\sqrt{2x-1}+\sqrt{2x-1}=2\)

\(\Rightarrow\sqrt{2x-1}=1\Rightarrow\sqrt{2x-1}^2=1\)

\(\Rightarrow2x-1=1\Rightarrow2x=2\Leftrightarrow x=1\)\(\left(tm\right)\)

d tương tự nha , nhân thêm 2 vế với \(\sqrt{6}\)là ra

AH
Akai Haruma
Giáo viên
27 tháng 3 2018

Lời giải:

ĐKXĐ: \(-2\leq x\leq 2\)

Ta có: \(\sqrt{2x+4}=\frac{6x-4}{\sqrt{x^2+4}}+2\sqrt{2-x}\)

\(\Leftrightarrow \sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\Leftrightarrow \sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\Leftrightarrow \frac{2x+4-(8-4x)}{\sqrt{2x+4}+\sqrt{8-4x}}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\Leftrightarrow \frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\Leftrightarrow (6x-4)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

\(\Leftrightarrow \left[\begin{matrix} 6x-4=0(1)\\ \sqrt{2x+4}+\sqrt{8-4x}=\sqrt{x^2+4}(2)\end{matrix}\right.\)

\((1)\Rightarrow x=\frac{2}{3}\) (thỏa mãn)

Xét (2) \(\Rightarrow 2x+4+8-4x+2\sqrt{(2x+4)(8-4x)}=x^2+4\)

\(\Leftrightarrow 12-2x+4\sqrt{2(4-x^2)}=x^2+4\)

\(\Leftrightarrow 4\sqrt{2(4-x^2)}=x^2+2x-8=(x-2)(x+4)\)

\(\Leftrightarrow \sqrt{2-x}(4\sqrt{2(x+2)}+(x+4)\sqrt{2-x})=0\)

Hiển nhiên biểu thức dài trong ngoặc luôn lớn hơn 0 \((x\geq -2\rightarrow x+4\geq 2\) )

Do đó \(\sqrt{2-x}=0\Leftrightarrow x=2\) (cũng thỏa mãn)

Vậy ....

30 tháng 11 2019

tự làm điều kiện nhé:

pt⇔\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\frac{2x+4-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{6x-4}{\sqrt{x^2+4}}\) \(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{1}{\sqrt{x^2+4}}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\\sqrt{2x+4}+2\sqrt{2-x}=\sqrt{x^2+4}\left(\circledast\right)\end{matrix}\right.\) giải (✳): ta dc x=2

bình phương 2 vế lên giải nhé

cuối cùng xét điều kiện rồi kết luận nghiện

10 tháng 8 2016

3xbình =(x+2) bình => 3x bình = x bìn+ 4 x +4 => 2x bình - 4x -4 =0 => 2. (x bình - 2x -1)=0

15 tháng 10 2017

2. \(\sqrt{x^2+6x+9}=3x-6\)

\(\sqrt{\left(x-3\right)^2}=3x-6\)

\(x-3=3x-6\)

\(x-3-3x+6=0\)

\(-2x+9=0\)

\(-2x=-9\)

\(x=\frac{9}{2}\)

3. \(\sqrt{x^2-4x+4}-2x+5=0\)

\(\sqrt{\left(x-2\right)^2}-2x+5=0\)

\(x-2-2x+5=0\)

\(-x+3=0\)

\(x=3\)

NV
15 tháng 4 2019

Đặt \(\sqrt{6x-9}=a\ge0\Rightarrow x=\frac{a^2+9}{6}\) pt trở thành:

\(\sqrt{\frac{a^2+9}{6}+a}+\sqrt{\frac{a^2+9}{6}-4a}=\sqrt{6}\)

\(\Leftrightarrow\sqrt{a^2+6a+9}+\sqrt{a^2-24a+9}=6\)

\(\Leftrightarrow a+3+\sqrt{a^2-24a+9}=6\)

\(\Leftrightarrow\sqrt{a^2-24a+9}=3-a\) (\(a\le3\))

\(\Leftrightarrow a^2-24a+9=a^2-6a+9\)

\(\Rightarrow a=0\Rightarrow\sqrt{6x-9}=0\Rightarrow x=\frac{3}{2}\)

Do ban đầu ko đặt ĐKXĐ nên phải thay nghiệm vào để thử, thấy đúng, vậy pt có nghiệm duy nhất \(x=\frac{3}{2}\)