Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A.
Gọi r và h lần lượt là bán kính đáy và chiều cao của khối trụ.
Đáp án A
Gọi R, h lần lượt là bán kính đáy, chiều cao của khối trụ
Diện tích toàn phần của khối trụ là S t p = 2 π R 2 + 2 π R h = 6 π ⇒ R 2 + R h = 3
Thể tích của khối trụ là V = π R 2 h = π R 3 − R 2 ≤ 2 π (khảo sát hàm số)
Dấu “=” xảy ra khi và chỉ khi R = 1.
Vậy V m a x = 2 π ⇒ R = 1
Đáp án B
Chiều cao của khối trụ là: h = AA' = 3a bán kính đáy r = B C 2 = a . Thể tích khối trụ là: V = πr 2 h = 3 πa 3 .
Theo công thức ta có:
Sxq = 2πrh = 2√3 πr2
Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)
b) Vtrụ = πR2h = √3 π r3
c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có là trung điểm của , = IJ.
Theo giả thiết = 300.
do vậy: AB1 = BB1.tan 300 = = r.
Xét tam giác vuông
AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .
Vậy khoảng cách giữa AB và O1O2 :
Đáp án B
Ta có
π = 2 πr h + r ⇒ h = 1 2 r - r ⇒ V = πr 2 h = π r 2 - r 3 = f r ⇒ f ' r = π 1 2 - 3 r 2 = 0 ⇒ r = 1 6 ⇒ h = 6 3 .