Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Ta có: V = π R 2 h ⇒ h = V π R 2 (1)
S x q = 2 π R h = 2 π . R . V π R 2 = 2 V R ; S t p = S x q + 2 S đ = 2 V R + 2 π R 2
Xét hàm số f R = 2 V R + 2 π R 2 (V là hằng số)
f ' R = − 2 V R 2 + 4 π R = 0 ⇔ R = V 2 π 3
Bảng biến thiên:
⇒ S t p min = f R min ⇔ R = V 2 π 3 ⇒ v = 2 π R 3
Từ (1)
⇒ h = V π R 2 = 2 π R 3 π R 2 = 2 R ⇒ h R = 2
Chọn B.
Phương pháp:
Thiết diện qua trục của hình trụ có bán kính đáy R và chiều cao h là hình chữ nhật có kích thước 2R × h. Thể tích khối trụ bán kính đáy R và chiều cao h là V = πR 2 h .
Cách giải:
Một mặt phẳng qua trục cắt khối trụ theo thiết diện là một hình chữ nhật có diện tích bằng 16a2
⇒ 2 R . 2 R = 16 a 2 ⇔ R 2 = 4 a 2 ⇔ R = 2 a ⇒ h = 2 R = 4 a
Thể tích của khối trụ đã cho: V = πR 2 h = π . ( 2 a ) 2 . 4 a = 16 πa 3 .
Đáp án D
Lời giải:
Lập bảng biến thiên ta thấy h0 là điểm cực đại của hàm số f(h) và f(h0) là GTLN của f(h) trên (0;2R)
Theo công thức ta có:
Sxq = 2πrh = 2√3 πr2
Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)
b) Vtrụ = πR2h = √3 π r3
c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có là trung điểm của , = IJ.
Theo giả thiết = 300.
do vậy: AB1 = BB1.tan 300 = = r.
Xét tam giác vuông
AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .
Vậy khoảng cách giữa AB và O1O2 :
Đáp án C.
Ta có:
S t p = 2 S x q ⇔ 2 π R h + 2 π R 2 = 4 π R h ⇔ R = h .
Chọn A.
Phương pháp:
Công thức tính diện tích xung quanh của hình trụ:
Hình trụ đó có diện tích toàn phần gấp ba diện tích xung quanh nên ta có:
Chọn: B