Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(4x-1)2=0
=>4x-1=0
hay x=1/4=0,25
b: \(6x^2-10x-1=0\)
\(\Delta=\left(-10\right)^2-4\cdot6\cdot\left(-1\right)=100+24=124>0\)
Do đó; Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{10-2\sqrt{31}}{12}\simeq-0,09\\x_2=\dfrac{10+2\sqrt{31}}{12}\simeq1,76\end{matrix}\right.\)
c: \(5x^2+24x+9=0\)
\(\Delta=24^2-4\cdot5\cdot9=396>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-24-2\sqrt{99}}{10}\simeq-4,39\\x_2=\dfrac{-24+2\sqrt{99}}{10}\simeq-0,41\end{matrix}\right.\)
d: \(16x^2-10x+1=0\)
\(\Delta=\left(-10\right)^2-4\cdot16\cdot1=100-64=36>0\)
Do đó: Phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{10-6}{64}=\dfrac{4}{64}=\dfrac{1}{16}\\x_2=\dfrac{10+6}{64}=\dfrac{1}{4}\end{matrix}\right.\)
a)
b) \(\dfrac{1}{2}x^2-2x+1=0\Leftrightarrow x^2-4x+2=0\)
\(\Leftrightarrow x_1=2-\sqrt{2}\approx0,59\) \(x_2=2+\sqrt{2}\approx3,41\)
a) \(x^2=2\Rightarrow x=\sqrt{2}=1,414\)
b) \(x^2=3\Rightarrow x=\sqrt{3}=1,732\)
c) \(x^2=3,5\Rightarrow x=\sqrt{3,5}=1,871\)
d) \(x^2=4,12\Rightarrow x=\sqrt{4,12}=2,030\)
giải: Nghiệm của phương trình X2 = a (với a ≥ 0) là căn bậc hai của a.
ĐS. a) x = \(\sqrt{2}\) ≈ 1,414, x = \(-\sqrt{2}\) ≈ -1,414.
b) x = \(\sqrt{3}\) ≈ 1,732, x = -\(\sqrt{3}\) ≈ 1,732.
c) x = \(\sqrt{3,5}\) ≈ 1,871, x = \(\sqrt{3,5}\) ≈ 1,871.
d) x = \(\sqrt{4,12}\) ≈ 2,030, x = \(\sqrt{4,12}\) ≈ 2,030.
ok nha!! 4353456364564575675687686734534534645667567568876
Bài giải:
a) 3x2 – 2x = x2 + 3 ⇔ 2x2 – 2x - 3 = 0.
b’ = -1, ∆’ = (-1)2 – 2 . (-3) = 7
x1 = ≈ 1, 82; x2 = ≈ -0,82
b) (2x - √2)2 – 1 = (x + 1)(x – 1) ⇔ 3x2 - 4√2 . x + 2 = 0 . b’ = -2√2
∆’ = (-2√2)2 – 3 . 2 = 2
x1 = = √2 ≈ 1,41; x2 = = ≈ 0,47.
c) 3x2 + 3 = 2(x + 1) ⇔ 3x2 – 2x + 1 = 0.
b’ = -1; ∆’ = (-1)2 – 3 . 1 = -2 < 0
Phương trình vô nghiệm.
d) 0,5x(x + 1) = (x – 1)2 ⇔ 0,5x2 – 2,5x + 1 = 0
⇔ x2 – 5x + 2 = 0, b’ = -2,5; ∆’ = (-2,5)2 – 1 . 2 = 4,25
x1 = 2,5 + √4,25 ≈ 4,56, x2 = 2,5 - √4,25 ≈ 0,44
(Rõ ràng trong trường hợp này dung công thức nghiệm thu gọn cũng không đơn giản hơn)
a) 3x2 – 2x = x2 + 3 ⇔ 2x2 – 2x - 3 = 0.
b’ = -1, ∆’ = (-1)2 – 2 . (-3) = 7
x1 = ≈ 1, 82; x2 = ≈ -0,82
b) (2x - √2)2 – 1 = (x + 1)(x – 1) ⇔ 3x2 - 4√2 . x + 2 = 0 . b’ = -2√2
∆’ = (-2√2)2 – 3 . 2 = 2
x1 = = √2 ≈ 1,41; x2 = = ≈ 0,47.
c) 3x2 + 3 = 2(x + 1) ⇔ 3x2 – 2x + 1 = 0.
b’ = -1; ∆’ = (-1)2 – 3 . 1 = -2 < 0
Phương trình vô nghiệm.
d) 0,5x(x + 1) = (x – 1)2 ⇔ 0,5x2 – 2,5x + 1 = 0
⇔ x2 – 5x + 2 = 0, b’ = -2,5; ∆’ = (-2,5)2 – 1 . 2 = 4,25
x1 = 2,5 + √4,25 ≈ 4,56, x2 = 2,5 - √4,25 ≈ 0,44
5 x 2 +24x +9 =0
Ta có: ∆ ' = 12 2 -5.9 =144 - 45 =99 > 0
∆ ' = 99 = 3 11
Phương trình có 2 nghiệm phân biệt:
Ta có \(\left(x^3+y^3\right)^2=x^6+y^6+3x^3y^3\left(x^3+y^3\right)\)\(\Rightarrow x^3y^3=\frac{10,1003^2-200,2006}{3.10,1003}=a\)
Xét \(\left(x^3+y^3\right)\left(x^6+y^6\right)=x^9+y^9+x^3y^3\left(x^3+y^3\right)\)
\(\Rightarrow x^9+y^9=10,1003.200,2006-10,1003.a\)
Toán Casio nên bạn bấm máy tính nhé !
(x^3+y^3)^2 thì làm sao mà ra x^6+y^6+3X^3y^3(x^3+y^3) được
16 x 2 – 8x +1=0
Ta có: ∆ ' = - 4 2 – 16.1 = 16 -16 =0
Phương trình có nghiệm kép :