K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

= ( x2 - xy) + (x - y)

= x(x - y) + (x - y)

= (x+1)(x-y)

21 tháng 8 2017

\(x^2+y^2-x^2y^2+xy-x-y\)

\(\Leftrightarrow x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)-x\left(1-y\right)\)

\(\Leftrightarrow\left(1-y\right)\left(x^2+x^2y-y-x\right)\)

\(\Leftrightarrow\left(1-y\right)\left(x+y\right)\left(x-1\right)\left(x+1\right)\)

22 tháng 6 2017

\(x^3-x^2y-xy^2+y^3\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)^2.\left(x+y\right)\)

Chúc bn học giỏi nhoa!!!

22 tháng 6 2017

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)( do khi ta đóng ngoặc 2 hạng tử cuôi phải đổi dấu trước dấu trừ);

\(=\left(x^2-y^2\right)\left(x-y\right)=\left(x-y\right)\left(x+y\right)\left(x-y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

ủng hộ nha bạn...

21 tháng 7 2016

\(x^2+5x-6\)

\(\Leftrightarrow x^2-x+6x-6\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)\)

Chúc bạn học tốt ok

21 tháng 7 2016

\(x^3-x+3x^2y+xy^2+y^3-y\)

\(=\left(x^3+3x^2y+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

19 tháng 8 2016

=xy ( x + y ) + z ( x^2 + 2xy + y^2 ) = xy ( x + y ) + z ( x + y ) ^ 2 = ( x + y ) ( xy + xz + yz )

12 tháng 10 2019

\(y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=\left(xy-y^2\right)\left(x-y\right)+xy\left(x-y\right)\)

\(=\left(xy-y^2+xy\right)\left(x-y\right)\)

\(=\left(2xy-y^2\right)\left(x-y\right)\)

12 tháng 10 2019

y ( x - y)2 + xy ( x-y) = (x - y) [(x-y) y +xy]

= (x-y) ( 2xy -y2)

15 tháng 10 2020

\(=\left(x^2y+xy^2\right)-\left(x+y\right)=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

15 tháng 10 2020

em cảm ơn cô @Nguyễn Linh Chi ạ !

10 tháng 2 2019

Trả lời :

Ta có :

\(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

Hok tốt

10 tháng 2 2019

a) \(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)

\(=\left(x+y+2\right)\left(x+y+5\right).\)

b) \(x^2y+xy^2+x+y=2010\)

\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)

\(\Leftrightarrow11\left(x+y\right)+1\left(x+y\right)=2010\)

\(\Leftrightarrow12\left(x+y\right)=2010\)

\(\Leftrightarrow x+y=\frac{335}{2}\)

\(\Leftrightarrow\left(x+y\right)^2=\frac{112225}{4}\)

\(\Leftrightarrow x^2+2xy+y^2=\frac{112225}{4}\)

\(\Leftrightarrow x^2+y^2+22=\frac{112225}{4}\)

\(\Leftrightarrow x^2+y^2=\frac{112137}{4}.\)

Vậy \(x^2+y^2=\frac{112137}{4}.\)

1 tháng 8 2018

x2+y2-x2y2+xy-x-y=x2-x2y2+y2-y-x+xy

                            =x(1-y2)+y(y-1)-x(1-y)

                            =x2(y-1)(y+1)+y(y-1)+x(y-1)

                           =-x2(y-1)(y+1)+y(y-1)+x(y-1)

                           =(y-1)(-x2(y+1)+y+x)

1 tháng 8 2018

f)    x4+2x2-4x-4=(x3.x+x3.2)-(2x.2+2.2)

                          =x3(x+2)-2(x+2)

                            =(x3-2)(x+2)

11 tháng 12 2018

\(x^2-3x+xy-3y\)

\(=x\left(x+y\right)-3\left(x+y\right)\)

\(=\left(x+y\right)\left(x-3\right)\)

\(x^2-2xy+y^2-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

\(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)