Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2-x^2y^2+xy-x-y\)
\(\Leftrightarrow x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)-x\left(1-y\right)\)
\(\Leftrightarrow\left(1-y\right)\left(x^2+x^2y-y-x\right)\)
\(\Leftrightarrow\left(1-y\right)\left(x+y\right)\left(x-1\right)\left(x+1\right)\)
\(x^3-x^2y-xy^2+y^3\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)^2.\left(x+y\right)\)
Chúc bn học giỏi nhoa!!!
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)( do khi ta đóng ngoặc 2 hạng tử cuôi phải đổi dấu trước dấu trừ);
\(=\left(x^2-y^2\right)\left(x-y\right)=\left(x-y\right)\left(x+y\right)\left(x-y\right)\)
\(=\left(x-y\right)^2\left(x+y\right)\)
ủng hộ nha bạn...
\(x^2+5x-6\)
\(\Leftrightarrow x^2-x+6x-6\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)\)
Chúc bạn học tốt
\(x^3-x+3x^2y+xy^2+y^3-y\)
\(=\left(x^3+3x^2y+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
=xy ( x + y ) + z ( x^2 + 2xy + y^2 ) = xy ( x + y ) + z ( x + y ) ^ 2 = ( x + y ) ( xy + xz + yz )
\(y\left(x-y\right)^2+xy\left(x-y\right)\)
\(=\left(xy-y^2\right)\left(x-y\right)+xy\left(x-y\right)\)
\(=\left(xy-y^2+xy\right)\left(x-y\right)\)
\(=\left(2xy-y^2\right)\left(x-y\right)\)
y ( x - y)2 + xy ( x-y) = (x - y) [(x-y) y +xy]
= (x-y) ( 2xy -y2)
\(=\left(x^2y+xy^2\right)-\left(x+y\right)=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
Trả lời :
Ta có :
\(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
Hok tốt
a) \(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+10\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)
\(=\left(x+y+2\right)\left(x+y+5\right).\)
b) \(x^2y+xy^2+x+y=2010\)
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Leftrightarrow11\left(x+y\right)+1\left(x+y\right)=2010\)
\(\Leftrightarrow12\left(x+y\right)=2010\)
\(\Leftrightarrow x+y=\frac{335}{2}\)
\(\Leftrightarrow\left(x+y\right)^2=\frac{112225}{4}\)
\(\Leftrightarrow x^2+2xy+y^2=\frac{112225}{4}\)
\(\Leftrightarrow x^2+y^2+22=\frac{112225}{4}\)
\(\Leftrightarrow x^2+y^2=\frac{112137}{4}.\)
Vậy \(x^2+y^2=\frac{112137}{4}.\)
\(x^2-3x+xy-3y\)
\(=x\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
\(x^2-2xy+y^2-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
\(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)
= ( x2 - xy) + (x - y)
= x(x - y) + (x - y)
= (x+1)(x-y)