\(x^2+2xy+7x+7y+y^2+10\)

b) Biết xy=11 và 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

Trả lời :

Ta có :

\(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

Hok tốt

10 tháng 2 2019

a) \(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)

\(=\left(x+y+2\right)\left(x+y+5\right).\)

b) \(x^2y+xy^2+x+y=2010\)

\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)

\(\Leftrightarrow11\left(x+y\right)+1\left(x+y\right)=2010\)

\(\Leftrightarrow12\left(x+y\right)=2010\)

\(\Leftrightarrow x+y=\frac{335}{2}\)

\(\Leftrightarrow\left(x+y\right)^2=\frac{112225}{4}\)

\(\Leftrightarrow x^2+2xy+y^2=\frac{112225}{4}\)

\(\Leftrightarrow x^2+y^2+22=\frac{112225}{4}\)

\(\Leftrightarrow x^2+y^2=\frac{112137}{4}.\)

Vậy \(x^2+y^2=\frac{112137}{4}.\)

30 tháng 1 2019

a,\(x^2+2xy+7x+7y+y^2+10=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)

\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

b,\(x^2y+xy^2+x+y=2010\Rightarrow xy\left(x+y\right)+x+y=2010\)

\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=167,5\)

Ta có:\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(167,5\right)^2-2.11=28034,25\)

4 tháng 2 2018

\(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+\frac{49}{4}-\frac{9}{4}\)

\(=\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}-\frac{9}{4}\)

\(=\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\)

\(=\left(x+y+\frac{7}{2}-\frac{3}{2}\right)\left(x+y+\frac{7}{2}+\frac{3}{2}\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

4 tháng 2 2018

b)Ta có: x2y+xy2+x+y=2010

<=>xy.x+xy.y+x+y=2010

<=>11x+11y+x+y=2010

<=>12(x+y)=2010

<=>x+y=167,5

=>(x+y)2=28056,25

<=>x2+y2+2xy=28056,25

<=>x2+y2=28034,25

\(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(\Leftrightarrow\left(x+2\right)3x\)

17 tháng 9 2017

bạn không làm được nữa o hộ mình cái mình đang cần gấp

a: \(=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y+5\right)\left(x+y+2\right)\)

b: \(x^2y+xy^2+x+y=2010\)

\(\Leftrightarrow xy\left(x+y\right)+x+y=2010\)

\(\Leftrightarrow\left(x+y\right)\left(xy+1\right)=2010\)

\(\Leftrightarrow x+y=167.5\)

\(x^2+y^2=\left(x+y\right)^2-2xy=167.5^2-22=28034.25\)

29 tháng 6 2018

\(1\hept{\begin{cases}6x^2-8x+3x-4\\2x\left(3x-4\right)+\left(3x-4\right)\\\left(3x-4\right)\left(2x+1\right)\end{cases}}\)

\(2\hept{\begin{cases}7x^2-7xy-5x+5y+6xy\\7x\left(x-y\right)-5\left(x-y\right)+\frac{6xy\left(x-y\right)}{\left(x-y\right)}\\\left(x-y\right)\left(7x-5+\frac{6xy}{\left(x-y\right)}\right)\end{cases}}\)

\(3\hept{\begin{cases}5x\left(x-y\right)-15\left(x-y\right)\\\left(x-y\right)\left(5x-15\right)\end{cases}}\)

\(4,,2x^2+x=x\left(2x+1\right)\)

\(5\hept{\begin{cases}x^3-4x-3x^2+12\\x\left(x^2-4\right)-3\left(x^2-4\right)\\\left(x+2\right)\left(x-2\right)\left(x-3\right)\end{cases}}\)

\(6\hept{\begin{cases}2x+2y+x^2-y^2\\2\left(x+y\right)+\left(x+y\right)\left(x-y\right)\\\left(x+y\right)\left(2+x-y\right)\end{cases}}\)

\(7\hept{\begin{cases}\left(x^2y-2xy\right)-\left(xy-2y\right)+\left(xy-y\right)\\xy\left(x-2\right)-y\left(x-2\right)+y\left(x-1\right)\\y\left(X-2\right)\left(x-1\right)+y\left(x-1\right)\end{cases}}\Leftrightarrow y\left(x-1\right)\left(x-2+1\right)\)

\(8\hept{\begin{cases}x\left(2-y\right)+z\left(2-y\right)\\\left(2-y\right)\left(x+1\right)\end{cases}}\)

16 tháng 9 2018

\(2x^2+x\)

\(=x\left(2x+1\right)\)

.

hk 

tốt

22 tháng 8 2018

xin lỗi bài này mình không biết

22 tháng 11 2017

a) đề sai thì phải 

b)  2x2 - 2xy - 7x + 7y = (2x2 - 2xy) - (7x - 7y) = 2x(x - y) - 7(x - y) = (x - y)(2x - 7)

c)   x2 - 3x + xy - 3y = (x2 + xy) - (3x + 3y) = x(x + y) - 3(x + y) = (x + y)(x - 3)

đ)    x2 - xy + x - y = (x2 - xy) + (x - y) = x(x - y) + (x - y) = (x - y)(x + 1)

Phối hợp các phương pháp 

a)  x2 - 2xy + y2 - xy + y2 = (x2 - 2xy + y2) - (xy - y2) = (x - y)2 - y(x - y) = (x - y)(x - y - y) = (x - y)(x - 2y)

23 tháng 9 2017

b)\(x^2y+xy^2-x-y\)

\(=xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(xy-1\right)\left(x+y\right)\)

23 tháng 9 2017

a)\(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x^2-1\right)\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

12 tháng 8 2019

a, \(9x^3y^2-15x^2y^3=3x^2y^2\cdot\left(3x-5y\right)\)

b,\(25x^2-49y^2=\left(5x\right)^2-\left(7y\right)^2\)

                            \(=\left(5x-7y\right)\cdot\left(5x+7y\right)\)

c,\(x^2y-xy^2-7x+7y=\left(x^2y-xy^2\right)-\left(7x-7y\right)\)

                                            \(=xy\left(x-y\right)-7\left(x-y\right)\)

                                          ,\(=\left(x-y\right)\cdot\left(xy-7\right)\)

 d,  \(x^2-2xy+y^2-9z^2=\left(x^2-2xy+y^2\right)-9z^2\)    

                                              \(=\left(x-y\right)^2-9z^2\)   

                                               \(=\left(x-y+3z\right)\cdot\left(x-y-3z\right)\)                                

13 tháng 8 2019

f) \(x^4-5x^2+4\)

\(=x^4-x^2-4x^2+4\)

\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)

\(=\left(x^2-4\right)\left(x^2-1\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-1\right)\left(x+1\right)\)