Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) bt \(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x+1\right)\left(x-2\right)\)
kl: ...
b) \(=\left(x+2\right)\left(x^2-8x-15\right)=\left(x+2\right)\left(x-5\right)\left(x-3\right)\)
kl:....
a, \(x^3-9x^2+6x+16\)
\(=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)
\(=\left(x-8\right)\left(x^2-x-2\right)\)
\(=\left(x-8\right)\left(x^2-2x+x-2\right)\)
\(=\left(x-8\right)\left[x\left(x-2\right)+\left(x-2\right)\right]\)
\(=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
b, \(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-x-6\right)\)
\(=\left(x-5\right)\left(x^2-3x+2x-6\right)\)
\(=\left(x-5\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]\)
\(=\left(x-5\right)\left(x-3\right)\left(x+2\right)\)
Chúc bạn học tốt!!!
\(ĐKXĐ:x\ne\pm\frac{3}{2};x\ne1;x\ne0\)
\(A=\left(\frac{2+3x}{2-3x}-\frac{36x^2}{9x^2-4}-\frac{2-3x}{2+3x}\right):\frac{x^2-x}{2x^2-3x^3}\)
\(=\left[\frac{\left(2+3x\right)^2}{\left(2+3x\right)\left(2-3x\right)}+\frac{36x^2}{\left(2-3x\right)\left(2+3x\right)}-\frac{\left(2-3x\right)^2}{\left(2-3x\right)\left(2+3x\right)}\right]:\frac{x\left(x-1\right)}{x^2\left(2-3x\right)}\)
\(=\frac{4+12x+9x^2+36x^2-4+12x-9x^2}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{36x^2+24x}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{12x\left(3x+2\right)}{2+3x}\cdot\frac{x}{x-1}\)
\(=\frac{12x^2}{x-1}\)
Để A nguyên dương hay \(\frac{12x^2}{x-1}\) nguyên dương
Mà \(12x^2\ge0\Rightarrow x-1>0\Rightarrow x>1\)
Vậy để A nguyên dương thì x là số nguyên dương lớn hơn 1.
B= 2x^2+2x+3x+3
= 2x(x+1)+3(x+1)
=(x+1)( 2x+3)
C=3x^2-6x-x+2
=3x(x-2)-(x-2)
=(x-2)(3x-1)
\(3x^2-8x+4\)
\(=3x^2-6x-2x+4\)
\(=\left(3x^2-6x\right)-\left(2x-4\right)\)
\(=3x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(3x-2\right)\left(x-2\right)\)
a) \(3x^2-8x-4\)
\(=3x^2-6x-2x+4\)
\(=3x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-2\right)\)
b) \(4x^4+81\)
\(=x^4+81+18x^2-18x^2\)
\(=\left[\left(x^2\right)^2+2x^2.9+9^2\right]-18x^2\)
\(=\left(x^2+9\right)^2-(\sqrt{18}x^2)\)
\(=\left(x^2+9-\sqrt{18}x\right)\left(x^2+9+\sqrt{18}x\right)\)
a) \(x^3-5x^2+8x-4=\left(x^3-x^2\right)-4\left(x^2-x\right)+4\left(x-1\right)=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
b) \(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\) chia hết cho 2x-3 => 7 chia hết cho 2x -3
=> 2x -3 thuộc U(7) ={-7;-1;1;7}
+2x-3 =-7 => x =-2
+2x-3 =-1 => x =1
+2x-3 =1 => x =2
+2x -3 =7 => x =5
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^6-x^4-9x^3+9x^2\)
\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)
\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)
\(x^4-4x^3+8x^2-16x+16\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x^2+4-4x\right)\)
\(=\left(x^2+4\right)\left(x-2\right)^2\)
\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4c^2\right)\)
\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)
a) 6x2 - 11x + 3
= 6x2 - 2x - 9x + 3
= 2x(3x - 1) - 3(3x - 1)
= (3x - 1)(2x - 3)
b) 2x2 + 3x - 27
= 2x2 - 6x + 9x - 27
= 2x(x - 3) + 9(x - 3)
= (2x + 9)(x - 3)
c) x3 - 7x + 6
= x3 - x2 + x2 - x - 6x + 6
= x2(x - 1) + x(x - 1) - 6(x - 1)
= (x - 1)( x2 + x - 6)
= (x -1)(x2 - 2x + 3x - 6)
= (x - 1)[x(x - 2) + 3(x - 2)]
= (x - 1)(x - 2)(x + 3)
bài d tương tự bài c
\(x^3-7x+6\)
\(=x^3-x^2+x^2-x-6x+6\)
\(=x^2\left(x-1\right)+x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-6\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x+3\right)\)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
Lời giải:
a. $3x^2-9x=3x(x-3)$
b. $4x^2+7y-4xy-7x=(4x^2-4xy)-(7x-7y)=4x(x-y)-7(x-y)=(x-y)(4x-7)$