K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

\(3x^2-8x+4\)

\(=3x^2-6x-2x+4\)

\(=\left(3x^2-6x\right)-\left(2x-4\right)\)

\(=3x\left(x-2\right)-2\left(x-2\right)\)

\(=\left(3x-2\right)\left(x-2\right)\)

17 tháng 8 2018

a) \(3x^2-8x-4\)

\(=3x^2-6x-2x+4\)

\(=3x\left(x-2\right)-2\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-2\right)\)

b) \(4x^4+81\)

\(=x^4+81+18x^2-18x^2\)

\(=\left[\left(x^2\right)^2+2x^2.9+9^2\right]-18x^2\)

\(=\left(x^2+9\right)^2-(\sqrt{18}x^2)\)

\(=\left(x^2+9-\sqrt{18}x\right)\left(x^2+9+\sqrt{18}x\right)\)

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

16 tháng 6 2017

a)\(3x^2-8x+4\)

\(=3x^2-2x-6x+4\)

\(=x\left(3x-2\right)-2\left(3x-2\right)\)

\(=\left(x-2\right)\left(3x-2\right)\)

b)\(4x^4+81\)

\(=4x^4+36x^2+81-36x^2\)

\(=\left(2x^2+9\right)^2-36x^2\)

\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)

c)\(x^8+98x^4+1\)

\(=\left(x^8+2x^4+1\right)+96x^4\)

\(=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)

\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)

\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)

\(=\left(x^4+8x^2+1\right)^2-\left(4x^3-4x\right)^2\)

\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)

d)\(x^4+6x^3+7x^2-6x+1\)

\(=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)

\(=x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)

\(=\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)\(=\left(x^2+3x-1\right)^2\)

24 tháng 7 2018

a/ \(x^3-5x^2+8x-4\)

\(\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\)

\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(\left(x-1\right)\left(x^2-4x+4\right)\)

\(\left(x-1\right)\left(x-2\right)^2\)

b/ \(x^3-x^2+x-1\)

\(\left(x^3-x^2\right)+\left(x-1\right)\)

\(x^2\left(x-1\right)+\left(x-1\right)\)

\(\left(x-1\right)\left(x^2+1\right)\)

21 tháng 8 2015

 

a) ( 4x+1) (12x-1) (3x+2) (x+1) -4

=(4x+1)(3x+2)(12x-1)(x+1)-4

=(12x2+11x+2)(12x2+11x-1)-4

Đặt t=12x2+11x+2 ta được:

t.(t-3)-4

=t2-3t-4

=t2+t-4t-4

=t.(t+1)-4.(t+1)

=(t+1)(t-4)

thay t=12x2+11x+2 ta được:

(12x2+11x+3)(12x2+11x-2)

Vậy ( 4x+1) (12x-1) (3x+2) (x+1) -4=(12x2+11x+3)(12x2+11x-2)

b) (x2+2x)2+9x2+18x+20

=(x2+2x)2+9.(x2+2x)+20

Đặt y=x2+2x ta được:

y2+9y+20

=y2+4y+5y+20

=y.(y+4)+5.(y+4)

=(y+4)(y+5)

thay y=x2+2x ta được:

(x2+2x+4)(x2+2x+5)

Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)

 

8 tháng 11 2016

a)\(x^2+4x-4y^2-8y\)

\(=x^2+2xy+4x-2xy-4y^2-8y\)

\(=x\left(x+2y+4\right)-2y\left(x+2y+4\right)\)

\(=\left(x-2y\right)\left(x+2y+4\right)\)

b)sai đề

c)sai đề tiếp

 

 

9 tháng 11 2016

a)x2+4x-4y2-8y=(x2-4y2)+(4x-8y)

=(x+2y(x-2y)+4(x-2y)

=(x-2y)(x+2y+4)

14 tháng 11 2017

ai giúp mình k đùng cho nha

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

18 tháng 6 2015

x^2(x-3) - 4 ( x - 3) = (x^2 - 4) ( x - 3 ) = ( x -2 )( x + 2) ( x - 3)

18 tháng 6 2015

= x2.(x - 3) - 4.(x - 3) = (x2 - 4). (x - 3) = (x - 2)(x +2).(x - 3)