K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Đáp án C.

27 tháng 1 2018

4 tháng 7 2019

Đáp án D

GV
21 tháng 4 2017

Vận tóc của chuyển động là:

\(v=s'=12t-3t^2\)

Ta có \(v'=12-6t\)

\(v'=0\) khi t = 2 và \(v'\) đổi dấu từ dương sang âm khi đi qua t=2. Vậy \(v\) đạt giá trị lớn nhất khi t = 2.

9 tháng 10 2018

Đáp án C

Vận tốc lớn nhất của vật đạt được là  v m a x = 54 m / s .

3 tháng 3 2019
https://i.imgur.com/QgD5vFU.jpg
AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C

1 một chất điểm chuyển động có pt chuyển động là s= \(-t^3+6t^2+17t\) , với t(s) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(m) là quãng đường vật đi dc trong khoảng thời gian đó. Trong khoảng thời gian 8 giây đầu tiên, vận tốc v(m/s) của chất điểm đạt giá trị lớn nhất là bao nhiêu 2 cho hình chóp S.ABCD có đáy là hình thang vuông tại A,B .Biết SA vuông góc với ABCD ,...
Đọc tiếp

1 một chất điểm chuyển động có pt chuyển động là s= \(-t^3+6t^2+17t\) , với t(s) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(m) là quãng đường vật đi dc trong khoảng thời gian đó. Trong khoảng thời gian 8 giây đầu tiên, vận tốc v(m/s) của chất điểm đạt giá trị lớn nhất là bao nhiêu

2 cho hình chóp S.ABCD có đáy là hình thang vuông tại A,B .Biết SA vuông góc với ABCD , AB=BC=a , AD=2a , SA= \(a\sqrt{2}\)

. Gọi E là trung điểm của AD.Tính bán kính mặt cầu đi qua các điểm S,A,B,C,E là

3 Cho các số thực dương x,y . Tìm giá trị lớn nhất của biểu thức P =\(\frac{4xy^2}{\left(x+\sqrt{x^2+4y^2}\right)^3}\)

4 Gọi S là tập hợp các giá trị của tham số m để hàm số \(y=\frac{1}{3}x^3+\left(m+1\right)x^2+4x+7\) nghịch biến trên một đoạn có độ dài bằng \(2\sqrt{5}\) . Tính tổng phần tỬ của S

5 Tọa độ một vecto pháp tuyến của măt phẳng \(\alpha\) đi qua ba điểm M (2;0;0),N(0;-3;0),P(0;0;4) là

2
NV
3 tháng 7 2020

3.

\(x^2+4y^2=x^2+8.\frac{y^2}{2}\ge9\sqrt[9]{\frac{x^2y^{16}}{2^8}}\)

\(\Rightarrow\sqrt{x^2+4y^2}\ge\sqrt{9\sqrt[9]{\frac{x^2y^{16}}{2^8}}}=3\sqrt[9]{\frac{xy^8}{2^4}}\)

\(\Rightarrow x+\sqrt{x^2+4y^2}\ge x+3\sqrt[9]{\frac{xy^8}{2^4}}\ge4\sqrt[4]{x\sqrt[3]{\frac{xy^8}{2^4}}}=4\sqrt[12]{\frac{x^4y^8}{2^4}}=4\sqrt[3]{\frac{xy^2}{2}}\)

\(\Rightarrow\left(x+\sqrt{x^2+4y^2}\right)^3\ge\left(4\sqrt[3]{\frac{xy^2}{2}}\right)^3=32xy^2\)

\(\Rightarrow P\le\frac{4xy^2}{32xy^2}=\frac{1}{8}\)

\(P_{max}=8\) khi \(y=x\sqrt{2}\)

4.

\(y'=x^2+2\left(m+1\right)x+4\) (1)

Để hàm số nghịch biến trên 1 đoạn có độ dài bằng \(2\sqrt{5}\)

\(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb thỏa mãn \(\left|x_2-x_1\right|=2\sqrt{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)^2-4>0\\\left(x_2-x_1\right)^2=20\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\\left(x_1+x_2\right)^2-4x_1x_2=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\4\left(m+1\right)^2-16=20\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)

\(\Rightarrow\sum m=-2\)

5.

Pt đoạn chắn: \(\frac{x}{2}+\frac{y}{-3}+\frac{z}{4}=1\Leftrightarrow6x-4y+3z+12=0\)

Mặt phẳng (MNP) nhận \(\left(6;-4;3\right)\) là 1 vtpt

NV
3 tháng 7 2020

1.

\(v\left(t\right)=s'\left(t\right)=-3t^2+12t+17=-3\left(t-2\right)^2+29\le29\)

\(\Rightarrow v\left(t\right)_{max}=29\) khi \(t=2\left(s\right)\)

2.

E là trung điểm AD \(\Rightarrow ABCE\) là hình vuông

Gọi O là giao điểm AC và BE, qua O kẻ đường thẳng song song SA cắt SC tại I

\(\Rightarrow\) I là tâm mặt cầu ngoại tiếp S.ABCE

\(\Rightarrow R=IC=\frac{SC}{2}\)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\) \(\Rightarrow SC=\sqrt{SA^2+AC^2}=2a\)

\(\Rightarrow R=\frac{AC}{2}=a\)

1 tháng 4 2017

a) Ta có:

v(t) = s’(t) = t3 – 3t2 + t – 3

a(t) = s’’(t) = 3t2 – 6t + 1

Do đó: v(2) = -5; a(2) = 1

b) v(t) = 0 ⇔ t3 – 3t2 + t – 3

⇔ t = 3

Vậy t = 3

10 tháng 4 2017

Theo ý nghĩa cơ học của đạo hàm ta có:

v(t)=s'(t)=t3-3t2+t-3

v(2)=23-3.22+2-3=-5 (m/s)

a(t)=v'(t)=s''(t)=3t2-6t+1

a(2)=3.22-6.2+1=1 (m/s2)

v(t)=t3-3t2+t-3=0

(t-3)(t1+1)=0  t = 3

Vậy thời điểm to=3s thì vận tốc bằng 0.