Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tóc của chuyển động là:
\(v=s'=12t-3t^2\)
Ta có \(v'=12-6t\)
\(v'=0\) khi t = 2 và \(v'\) đổi dấu từ dương sang âm khi đi qua t=2. Vậy \(v\) đạt giá trị lớn nhất khi t = 2.
16.
\(\overrightarrow{n_{\left(P\right)}}=\left(2;1;-1\right)\) ; \(\overrightarrow{n_{\left(Q\right)}}=\left(1;-2;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]=\left(-1;-3;-5\right)\)
\(\Rightarrow\) Giao tuyến 2 mp nhận \(\left(-1;-3;-5\right)\) hoặc \(\left(1;3;5\right)\) là 1 vtcp
17.
Đường thẳng nhận \(\left(2;-3;6\right)\) là 1 vtcp
Pt tham số: \(\left\{{}\begin{matrix}x=-2+2t\\y=4-3t\\z=3+6t\end{matrix}\right.\)
Pt chính tắc: \(\frac{x+2}{2}=\frac{y-4}{-3}=\frac{z-3}{6}\)
18.
Pt tham số đường thẳng d qua A và vuông góc (P): \(\left\{{}\begin{matrix}x=-2+t\\y=1+t\\z=5-t\end{matrix}\right.\)
H là giao điểm d và (P) nên tọa độ thỏa mãn:
\(-2+t+1+t-5+t+9=0\Rightarrow t=-1\) \(\Rightarrow H\left(-3;0;6\right)\)
19.
Pt mặt phẳng (P) qua A và vuông góc d:
\(3\left(x-4\right)+2\left(y+3\right)-z=0\)
\(\Leftrightarrow3x+2y-z-6=0\)
Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)
H là giao điểm d và (P) nên tọa độ thỏa mãn:
\(3\left(-2+3t\right)+2\left(-2+2t\right)+t=0\Rightarrow t=\frac{5}{7}\) \(\Rightarrow H\left(\frac{1}{7};-\frac{4}{7};-\frac{5}{7}\right)\)
14.
\(\overrightarrow{BA}=\left(4;2;0\right)=2\left(2;1;0\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1;-1\right)\)
Mp trung trực AB vuông góc AB và qua M có pt:
\(2\left(x+1\right)+1\left(y-1\right)=0\Leftrightarrow2x+y+1=0\)
15.
Gọi pt \(\left(Q\right)\) có dạng \(ax+by+cz+d=0\) (\(d\ne0\))
(Q) qua A nên: \(2a+d=0\) \(\Rightarrow d=-2a\)
\(\left(P\right)\perp\left(Q\right)\Leftrightarrow2b-c=0\) \(\Rightarrow c=2b\)
\(d\left(O;\left(Q\right)\right)=\frac{4}{3}\Leftrightarrow\frac{\left|d\right|}{\sqrt{a^2+b^2+c^2}}=\frac{4}{3}\Leftrightarrow9d^2=16\left(a^2+b^2+c^2\right)\) \(\Leftrightarrow36a^2=16\left(a^2+b^2+4b^2\right)\) \(\Leftrightarrow20a^2=80b^2\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=-2b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=2;b=1;c=2;d=-4\\a=2;b=-1;c=-2;d=-4\end{matrix}\right.\) Có 2 mặt phẳng (Q) thỏa mãn: \(\left[{}\begin{matrix}2x+y+2z-4=0\\2x-y-2z-4=0\end{matrix}\right.\)
z C B O A D y S x M N
a. Do ABCD là hình thoi có tâm là O nên từ giả thiết ta có :
\(C=\left(-2;0;0\right)\)
\(D=\left(0;-1;0\right)\)
Từ đó M là trung điểm của SC nên :
\(M\left(-1;0=-\sqrt{2}\right)\)
Ta có \(\overrightarrow{SA}=\left(2;0;-2\sqrt{2}\right)\)
\(\overrightarrow{BM}=\left(-1;-1;\sqrt{2}\right)\)
Gọi \(\alpha\) là góc giữa 2 đường thẳng SA, MB, ta có :
\(\cos\alpha=\frac{\left|\overrightarrow{SA.}\overrightarrow{BM}\right|}{\left|\overrightarrow{SA}\right|.\left|\overrightarrow{MB}\right|}=\frac{\left|-2-4\right|}{\sqrt{4+8}.\sqrt{1+2+1}}=\frac{6}{4\sqrt{3}}=\frac{\sqrt{3}}{2}\)
Vậy \(\alpha=60^0\)
Để tính khoảng cách giữa 2 đường thẳng chéo nhau SA, BM ta sử dụng công thức :
\(d\left(SA;BM\right)=\frac{\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{AB}\right|}{\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right]\right|}\) (1)
Theo công thức xác định tọa độ vecto \(\left[\overrightarrow{SA};\overrightarrow{BM}\right]\) ta có :
\(\left[\overrightarrow{SA};\overrightarrow{BM}\right]=\left(\left|\begin{matrix}0&-2\sqrt{2}\\-1&\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&2\\\sqrt{2}&-1\end{matrix}\right|;\left|\begin{matrix}2&0\\-1&-1\end{matrix}\right|\right)\)
\(=\left(-2\sqrt{2};1;0\right)\)
\(\Rightarrow\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right]\right|=\sqrt{12}\)
\(\overrightarrow{AB}=\left(-2;1;0\right)\)
\(\Rightarrow\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{AB}=4\sqrt{2}\)
Thay vào (1) ta có :
\(d\left(SA;BM\right)=\frac{4\sqrt{2}}{\sqrt{12}}=\frac{2\sqrt{6}}{3}\)
b. Vì AB \\ mặt phẳng (SDC) nên MN \\ DC. Suy ra N là trung điểm của SD
\(\Rightarrow N=\left(0;-\frac{1}{2};\sqrt{2}\right)\)
Dễ thấy :
\(V_{S.ABMN}=V_{S.ABN}+V_{S.BMN}\)
\(=\frac{1}{6}\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{SN}\right|+\frac{1}{6}\left|\left[\overrightarrow{SB};\overrightarrow{SM}\right].\overrightarrow{SN}\right|\) (2)
Ta có \(\overrightarrow{SA}=\left(2;0;-2\sqrt{2}\right)\)
\(\overrightarrow{SN}=\left(0;-\frac{1}{2};-\sqrt{2}\right)\)
\(\overrightarrow{SB}=\left(0;1;-2\sqrt{2}\right)\)
\(\overrightarrow{SM}=\left(-1;0;-\sqrt{2}\right)\)
Ta lại có :
\(\left[\overrightarrow{SA};\overrightarrow{SB}\right]=\left(\left|\begin{matrix}0&-2\sqrt{2}\\-1&-2\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&2\\-2\sqrt{2}&0\end{matrix}\right|;\left|\begin{matrix}2&0\\0&1\end{matrix}\right|\right)\)
\(=\left(2\sqrt{2};4\sqrt{2};2\right)\)
\(\left[\overrightarrow{SB};\overrightarrow{SM}\right]=\left(\left|\begin{matrix}1&-2\sqrt{2}\\0&\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&0\\-\sqrt{2}&-1\end{matrix}\right|;\left|\begin{matrix}0&1\\-1&0\end{matrix}\right|\right)\)
\(=\left(-\sqrt{2};2\sqrt{2};1\right)\)
Thay vào (2) được :
\(V_{S.ABMN}=\frac{1}{6}\left(\left|-2\sqrt{2}-2\sqrt{2}\right|+\left|-\sqrt{2}-\sqrt{2}\right|\right)=\sqrt{2}\)
19.
Phương trình mặt phẳng theo đoạn chắn:
\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)
\(\Leftrightarrow4x-3y-6z-12=0\)
20.
Phương trình mặt phẳng (ABC) theo đoạn chắn:
\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
\(\Leftrightarrow6x+3y+2z-6=0\)
Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)
15.
\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)
16.
\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)
Phương trình (P):
\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)
17.
\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)
\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Phương trình mặt phẳng (R):
\(2x+3y+z=0\)
18.
\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)
\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)
Phương trình:
\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)
\(\Leftrightarrow9x+6y+4z-30=0\)
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
6.
d nhận \(\left(2;-1;-3\right)\) là 1 vtcp
7.
Phương trình mặt phẳng (P) qua A và vuông góc d nhận \(\left(3;2;-1\right)\) là 1 vtpt có dạng:
\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)
\(\Leftrightarrow3x+2y-z-4=0\)
Pt tham số d: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)
A' là giao điểm d và (P) nên tọa độ thỏa mãn:
\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)
\(\Rightarrow A'\left(1;0;-1\right)\)
8.
Tọa độ H là \(H\left(0;2;0\right)\) (giữ tung độ, thay hoành độ và cao độ bằng 0 là xong)
4.
\(\left(1+e^x\right)x=\left(1+e\right)x\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Diện tích:
\(S=\int\limits^1_0\left[\left(1+e\right)x-\left(1+e^x\right)x\right]dx\)
\(=\int\limits^1_0e.xdx-\int\limits^1_0x.e^xdx\)
\(=\left(\frac{1}{2}e.x^2-\left(x-1\right)e^x\right)|^1_0=\frac{e}{2}-1=\frac{e-2}{2}\)
5.
Do 3 điểm A;B;C lần lượt thuộc 3 trục tọa độ nên mặt cầu đi qua 4 điểm có tâm \(I\left(\frac{1}{2};-1;2\right)\)
\(R=IA=\sqrt{\left(\frac{1}{2}\right)^2+\left(-1\right)^2+2^2}=\frac{\sqrt{21}}{2}\)
Phương trình:
\(\left(x-\frac{1}{2}\right)^2+\left(y+1\right)^2+\left(z-2\right)^2=\frac{21}{4}\)
3.
\(x^2+4y^2=x^2+8.\frac{y^2}{2}\ge9\sqrt[9]{\frac{x^2y^{16}}{2^8}}\)
\(\Rightarrow\sqrt{x^2+4y^2}\ge\sqrt{9\sqrt[9]{\frac{x^2y^{16}}{2^8}}}=3\sqrt[9]{\frac{xy^8}{2^4}}\)
\(\Rightarrow x+\sqrt{x^2+4y^2}\ge x+3\sqrt[9]{\frac{xy^8}{2^4}}\ge4\sqrt[4]{x\sqrt[3]{\frac{xy^8}{2^4}}}=4\sqrt[12]{\frac{x^4y^8}{2^4}}=4\sqrt[3]{\frac{xy^2}{2}}\)
\(\Rightarrow\left(x+\sqrt{x^2+4y^2}\right)^3\ge\left(4\sqrt[3]{\frac{xy^2}{2}}\right)^3=32xy^2\)
\(\Rightarrow P\le\frac{4xy^2}{32xy^2}=\frac{1}{8}\)
\(P_{max}=8\) khi \(y=x\sqrt{2}\)
4.
\(y'=x^2+2\left(m+1\right)x+4\) (1)
Để hàm số nghịch biến trên 1 đoạn có độ dài bằng \(2\sqrt{5}\)
\(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb thỏa mãn \(\left|x_2-x_1\right|=2\sqrt{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)^2-4>0\\\left(x_2-x_1\right)^2=20\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\\left(x_1+x_2\right)^2-4x_1x_2=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\4\left(m+1\right)^2-16=20\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
\(\Rightarrow\sum m=-2\)
5.
Pt đoạn chắn: \(\frac{x}{2}+\frac{y}{-3}+\frac{z}{4}=1\Leftrightarrow6x-4y+3z+12=0\)
Mặt phẳng (MNP) nhận \(\left(6;-4;3\right)\) là 1 vtpt
1.
\(v\left(t\right)=s'\left(t\right)=-3t^2+12t+17=-3\left(t-2\right)^2+29\le29\)
\(\Rightarrow v\left(t\right)_{max}=29\) khi \(t=2\left(s\right)\)
2.
E là trung điểm AD \(\Rightarrow ABCE\) là hình vuông
Gọi O là giao điểm AC và BE, qua O kẻ đường thẳng song song SA cắt SC tại I
\(\Rightarrow\) I là tâm mặt cầu ngoại tiếp S.ABCE
\(\Rightarrow R=IC=\frac{SC}{2}\)
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\) \(\Rightarrow SC=\sqrt{SA^2+AC^2}=2a\)
\(\Rightarrow R=\frac{AC}{2}=a\)