Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2022.2023}{2022.2023}+1=1+1=2\)
\(\dfrac{2023.2024}{2023.2024}+1=1+1=2\)
Vậy: \(\dfrac{2022.2023}{2022.2023}+1=\dfrac{2023.2024}{2023.2024}+1\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)=2023x\)
\(\Rightarrow2022x+\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}+\dfrac{1}{2022}-\dfrac{1}{2023}\right)=2023x\)\(\Rightarrow2022x-2023x=-\left(1-\dfrac{1}{2023}\right)\)
\(\Rightarrow-x=-\dfrac{2022}{2023}\Leftrightarrow x=\dfrac{2022}{2023}\)
(x + 1/1.2) + (x + 1/2.3) + (x + 1/3.4) + ... + (x + 1/2022.2023) = 2023x
x + x + x + ... + x + 1/1.2 + 1/2.3 + ... + 1/2022.2023 = 2023x
2022x + 1 - 1/2 + 1/2 - 1/3 + ... + 1/2022 - 2023 = 2023x
2023x - 2022x = 1 - 1/2023
x = 2022/2023
Lời giải:
$A=1+2.3+3.4+4.5+...+2022.2023$
$3A=3+2.3(4-1)+3.4(5-2)+4.5(6-3)+....+2022.2023(2024-2021)$
$=3+2.3.4+3.4.5+4.5.6+...+2022.2023.2024-(1.2.3+2.3.4+3.4.5+...+2021.2022.2023)$
$=3+2022.2023.2024-1.2.3=2022.2023.2024-3$
$\Rightarrow A=2759728047$
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)
\(2A=2\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{101}}\)
\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)
\(A=1-\dfrac{1}{2^{100}}\)
b) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2023\cdot2024}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(=1-\dfrac{1}{2024}\)
\(=\dfrac{2024}{2024}-\dfrac{1}{2024}\)
\(=\dfrac{2023}{2024}\)
a) Ta có : \(\dfrac{-1}{5}< 0< \dfrac{1}{1000}\)
\(\Rightarrow\dfrac{-1}{5}< \dfrac{1}{1000}\)
b) Ta có : \(\dfrac{267}{268}< 1< \dfrac{1347}{1343}\)
=> \(\dfrac{267}{-268}< -\dfrac{1347}{1343}\)
c) \(\dfrac{13}{38}>\dfrac{13}{39}=\dfrac{1}{3}=\dfrac{19}{87}>\dfrac{29}{88}\)
=> \(-\dfrac{13}{38}< \dfrac{29}{-88}\)
d) \(\dfrac{181818}{313131}=\dfrac{18}{31}\)
=> \(-\dfrac{18}{31}=-\dfrac{181818}{313131}\)
a, A = \(\dfrac{2022.2023-1}{2022.2023}\) = \(\dfrac{2022.2023}{2022.2023}\) - \(\dfrac{1}{2022.2023}\) = 1 - \(\dfrac{1}{2022.2023}\)
B = \(\dfrac{2021.2022-1}{2021.2022}\) = \(\dfrac{2021.2022}{2021.2022}\) - \(\dfrac{1}{2021.2022}\) = 1 - \(\dfrac{1}{2021.2022}\)
Vì \(\dfrac{1}{2022.2023}\) < \(\dfrac{1}{2021.2022}\)
Nên A > B
b, C = \(\dfrac{2022.2023}{2022.2023+1}\)
C = \(\dfrac{2022.2023+1-1}{2022.2023+1}\) = \(\dfrac{2022.2023+1}{2022.2023+1}\) - \(\dfrac{1}{2022.2023+1}\)
C = 1 - \(\dfrac{1}{2022.2023+1}\)
D = \(\dfrac{2023.2024}{2023.2024+1}\) = \(\dfrac{2023.2024+1-1}{2023.2024+1}\)
D = 1 - \(\dfrac{1}{2023.2024+1}\)
Vì \(\dfrac{1}{2022.2023+1}\) > \(\dfrac{1}{2023.2024+1}\)
Nên C < D