K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2023

cứu tui

 

9 tháng 4 2023

\(\dfrac{2022.2023}{2022.2023}+1=1+1=2\)

\(\dfrac{2023.2024}{2023.2024}+1=1+1=2\)

Vậy: \(\dfrac{2022.2023}{2022.2023}+1=\dfrac{2023.2024}{2023.2024}+1\)

20 tháng 6 2023

a, A = \(\dfrac{2022.2023-1}{2022.2023}\) = \(\dfrac{2022.2023}{2022.2023}\) - \(\dfrac{1}{2022.2023}\) = 1 - \(\dfrac{1}{2022.2023}\)

B = \(\dfrac{2021.2022-1}{2021.2022}\) =  \(\dfrac{2021.2022}{2021.2022}\)  - \(\dfrac{1}{2021.2022}\) = 1 - \(\dfrac{1}{2021.2022}\) 

Vì \(\dfrac{1}{2022.2023}\) < \(\dfrac{1}{2021.2022}\)

Nên A > B

b, C = \(\dfrac{2022.2023}{2022.2023+1}\)  

    C = \(\dfrac{2022.2023+1-1}{2022.2023+1}\) = \(\dfrac{2022.2023+1}{2022.2023+1}\) - \(\dfrac{1}{2022.2023+1}\) 

     C = 1  - \(\dfrac{1}{2022.2023+1}\)

     D = \(\dfrac{2023.2024}{2023.2024+1}\) = \(\dfrac{2023.2024+1-1}{2023.2024+1}\) 

     D = 1 - \(\dfrac{1}{2023.2024+1}\)

Vì \(\dfrac{1}{2022.2023+1}\) > \(\dfrac{1}{2023.2024+1}\)

Nên C < D 

 

12 tháng 8 2023

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)=2023x\)

\(\Rightarrow2022x+\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}+\dfrac{1}{2022}-\dfrac{1}{2023}\right)=2023x\)\(\Rightarrow2022x-2023x=-\left(1-\dfrac{1}{2023}\right)\)

\(\Rightarrow-x=-\dfrac{2022}{2023}\Leftrightarrow x=\dfrac{2022}{2023}\)

12 tháng 8 2023

(x + 1/1.2) + (x + 1/2.3) + (x + 1/3.4) + ... + (x + 1/2022.2023) = 2023x

x + x + x + ... + x + 1/1.2 + 1/2.3 + ... + 1/2022.2023 = 2023x

2022x + 1 - 1/2 + 1/2 - 1/3 + ... + 1/2022 - 2023 = 2023x

2023x - 2022x = 1 - 1/2023

x = 2022/2023

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Lời giải:
$A=1+2.3+3.4+4.5+...+2022.2023$

$3A=3+2.3(4-1)+3.4(5-2)+4.5(6-3)+....+2022.2023(2024-2021)$

$=3+2.3.4+3.4.5+4.5.6+...+2022.2023.2024-(1.2.3+2.3.4+3.4.5+...+2021.2022.2023)$

$=3+2022.2023.2024-1.2.3=2022.2023.2024-3$

$\Rightarrow A=2759728047$

1 tháng 11 2023

a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

\(2A=2\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{101}}\)

\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)

\(A=1-\dfrac{1}{2^{100}}\)

b) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2023\cdot2024}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)

\(=1-\dfrac{1}{2024}\)

\(=\dfrac{2024}{2024}-\dfrac{1}{2024}\)

\(=\dfrac{2023}{2024}\)

1 tháng 11 2023

cứu 

21 tháng 1 2018

Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1 

Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)

10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1

Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)

Từ (1) và (2) => 10A < 10B

=> A < B

Tk mk nha

21 tháng 1 2018

\(A=\frac{10^{11}-1}{10^{12}-1}\)

\(B=\frac{10^{10}+1}{10^{11}+1}\)

Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\)\(\frac{10^{10}+1}{10^{11}+1}< 1\)

\(\Rightarrow\)\(A,B< 1\)

Ta có:

\(10^{11}-1>10^{10}+1\)\(10^{12}-1>10^{11}+1\)

\(\Rightarrow A>B\)

Vậy A > B

6 tháng 9 2017

 ta có :

\(25^{1008}=\left(5^2\right)^{1008}=5^{2.1008}=5^{2016}\)

mà \(5^{2017}>5^{2016}\)

\(\Rightarrow\)\(5^{2017}>\left(5^2\right)^{1008}\)

\(\Rightarrow\)\(5^{2017}>25^{1008}\)

6 tháng 9 2017

có \(5^{2017}=\left(5^2\right)^{1008}\times5\)\(=25^{1008}\times5\)

mà \(=25^{1008}\times5\)\(25^{1008}\)

nên \(5^{2017}>25^{1008}\)

19 tháng 7 2018

Ta có:

275 = (33)5 = 315

2433 = (35)3 = 315

Vì 315 = 315 => 275 = 2433

Mà 2433 < 2453 (vì 243 < 245)

=> 275 < 2453

Vậy 275 < 2453

19 tháng 7 2018

275=2453