Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 1 - 1 ) + ( 1 - 1 ) + ( 1 - 1 ) + ...
= 0 + 0 + 0 + ........
= 0
b ) = -1 + ( -1 ) + ( - 1 ) + ....
= vô tận đây này
c) Cái này vô tận
Bài 2:
Số số hạng là:
(2n-1-1):2+1=n(số)
Tổng là:
\(\dfrac{\left(2n-1+1\right)\cdot n}{2}=\dfrac{2n^2}{2}=n^2\) là số chính phương(đpcm)
Bài 1
a) \(\frac{5}{6}=\frac{x-1}{x}\)
<=> 5x=6x-6
<=> 5x-6x=-6
<=> -11x=-6
<=> \(x=\frac{6}{11}\)
b)c)d) nhân chéo làm tương tự
3+3^2+3^3+3^4+...+3^100
=3.(3+1)+3^3.(3+1)+...+3^99.(3+1)
=3.4 +3^3.4 +...+3^99.4
=4.(3+3^3+...+3^99)
Có: 4:4
=> 4.(3+3^3+...+3^99) chia hết cho 4
Vậy tổng dãy này chia hết cho 4
Vậy chọn đáp án (C).
Mình ko bít có đúng ko nên sai đừng trách mình nhé !
\(A=\frac{7^{2011}+1}{7^{2013}+1}\)
\(7^2.A=\frac{7^{2013}+49}{7^{2013}+1}=\frac{7^{2013}+1+48}{7^{2013}+1}=\)\(\frac{7^{2013}+1}{7^{2013}+1}+\frac{48}{7^{2013}+1}=1\frac{48}{7^{2013}+1}\)
\(B=\frac{7^{2013}+1}{7^{2015}+1}\)
\(7^2.B=\)\(=\frac{7^{2015}+49}{7^{2015}+1}=\)\(\frac{7^{2015}+1+48}{7^{2015}+1}=\)\(\frac{7^{2015}+1}{7^{2015}+1}+\frac{48}{7^{2015}+1}=1\frac{48}{7^{2015}+1}\)
\(Vì\) \(1\frac{48}{7^{2013}+1}>1\frac{48}{7^{2013}+1}\)\(\Rightarrow7^2.A>7^2.B\)\(\Rightarrow A>B\)
\(Vậy\) \(A>B\)
Bài 2 nè
ta xét B trước:
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..\)\(.....+\frac{1}{2015}-\frac{1}{2016}\)
=\(\left(\frac{1}{1}+\frac{1}{3}+....+\frac{1}{2015}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{2016}\right)\)
\(=\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}\right)-\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
vậy A:B\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)\(:\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
\(=1\)
2. Đỉnh F nằm giữa 2 đỉnh A và E
mk đã vẽ thử hình ùi
CHÚC BẠN HỌC TỐT
1C. A = { 1, 2, 3, 4} và D. A = {1; 2; 3; 4}.
2 Đáp án sai là D. g ∈ B