Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a, \(B=1^2+2^2+3^2+...+99^2+100^2.\)
\(B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)+100\left(101-1\right).\)
\(B=1.2-1.1+2.3-1.2+3.4-1.3+...+99.100-1.99+100.101-1.100.\)
\(B=\left(1.2+2.3+3.4+...+99.100+100.101\right)-\left(1+2+3+...+100\right).\)
\(B=\dfrac{\left[1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\right]}{3}+\dfrac{100\left(100+1\right)}{2}.\)
\(B=\dfrac{\left(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\right)}{3}+5050.\)
\(B=\dfrac{100.101.102}{3}+5050.\)
\(B=343400+5050=348450.\)
Vậy \(B=348450.\)
\(C=...\) (làm tương tự con \(B\)).
\(D=...\) (hình như đề sai).
\(T=1.100+2.99+3.98+...+99.2+100.1.\)
\(T=1.100+2.\left(100-1\right)+3.\left(100-2\right)+...+99\left(100-98\right)+100\left(100-99\right).\)
\(T=1.100+100.2+1.2+100.3+2.3+...+100.99+98.99+100.100+99.100.\)
\(T=100\left(1+2+3+...+100\right)-\left(1.2+2.3+3.4+...+99.100\right).\)
\(T=100.\dfrac{100.101}{2}-\dfrac{99.100.101}{3}.\)
\(T=100.5050-333300.\)
\(T=505000-333300=171700.\)
Vậy \(T=171700.\)
\(S=1.2.3+2.3.4+3.4.5+...+98.99.100.\)
\(4S=4\left(1.2.3+2.3.4+3.4.5+...+98.99.100\right).\)
\(4S=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4.\)
\(4S=1.2.3\left(5-1\right)+2.3.4\left(6-2\right)+...+98.99.100\left(101-97\right).\)
\(4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100.\)
\(4S=\left(1.2.3.4-1.2.3.4\right)+\left(2.3.4.5-2.3.4.5\right)+...+\left(97.98.99.100-97.98.99.100\right)+98.99.100.101.\)
\(4S=0+0+...+0+98.99.100.101.\)
\(4S=98.99.100.101.\)
\(4S=97990200.\)
\(\Rightarrow S=\dfrac{97990200}{4}=24497550.\)
Vậy \(S=24497550.\)
~ Học tốt!!! ~
Tính giá trị của A, biết:
A = 1.3+2.4+3.5+...+99.101
Bài làm :
Thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)
Ta có
A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)
A = 1.2+1+2.3+2+3.4+3+...+99.100+99
A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)
A = 333300 + 4950 = 338250
Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]
Tính: A = 1.4+2.5+3.6+...+99.102 = ?
Bài làm:
Thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)
Ta có
A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)
A = 1.2+1+2.3+2+3.4+3+...+99.100+99
A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)
A = 333300 + 4950 = 338250
Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]
Tính tổng các bình phương của 100 số tự nhiê n đầu tiên
A = 12 +22 +32+...+992 +1002
Bài làm :
thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)
Ta có
A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)
A = 1.2+1+2.3+2+3.4+3+...+99.100+99
A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)
A = 333300 + 4950 = 338250
Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]
=> A = 101 . (102 - 1) + 102.(103 - 1) + .... + 200.(201 - 1)
=> A = 101.102 - 101 + 102.103 - 102 + ..... + 200.201 - 200
=> A = (101.102 + 102.103 + ..... + 200.201) - (101 + 102 + ..... + 200)
=> A = 2706800 - 15050
=> A = 2691750
Ta có : A = 1012 + 1022 + ..... + 2002
=> A = 101 . (102 - 1) + 102.(103 - 1) + .... + 200.(201 - 1)
=> A = 101.102 - 101 + 102.103 - 102 + ..... + 200.201 - 200
=> A = (101.102 + 102.103 + ..... + 200.201) - (101 + 102 + ..... + 200)
=> A = 2706800 - 15050
=> A = 2691750
a/ Ta tính trường hợp tổng quát có n số hạng. Ta có:
+/ S1 = 1 + 2 + 3 + ....+n = \(\frac{n\left(n+1\right)}{2}\)
+/ S2 = 1.2 + 2.3 + 3.4 +...+ n(n+1)
3S2 = 1.2.3 + 2.3.3 + 3.4.3 +..+ n(n+1).3
3S2= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +..+ n(n+1)(n+2 -(n-1))
3S2= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +.. - (n-1)n(n+1) + n(n+1)(n+2)
3S2= n(n+1)(n+2)
=> S2 = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Tính S = 1² + 2² + ...+ n²
Ta có: S2 - S1 = [1.2 + 2.3 + 3.4 +...+ n(n+1)]-(1 + 2 + 3 + ....+n)
=> S2 - S1=(1.2-1)+(2.3-2)+(3.4-3)+...+[n(n+1)-n]
=> S2 - S1=1+4+9+...+n2=12+22+32+...+n2=S
Như vậy: S=S2-S1=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
=> \(S=n\left(n+1\right).\left(\frac{n+2}{3}-\frac{1}{2}\right)\)
=> \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Thay n=98 => \(S=\frac{98.99.197}{6}=318549\)
b/ 2014.2016=2014(2015+1)=2014+2014.2015=2014+2015(2015-1)=2014+20152-2015=20152-1<20152
Vậy 2014.2016<20152