K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018

A = 1.2 + 2.3 + 3.4 + ... + 98.99

A = 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 98.(98 + 1)

A = 12 + 1 + 22 + 2 + 32 + 3 + ... + 982.98

A = (12 + 22 + 3+ ... + 982) + (1 + 2 + 3 + ... + 98)

A = (12 + 22 + 3+ ... + 982) + 4851               (1)

B = 12 + 2+ 32 + ... + 982              (2)

(1)(2) => A - B = 4851 ⋮ 4851

17 tháng 10 2018

ta có: B = 1 + 22 + 32 +...+982 = 1.1 +2.2+3.3+...+98.98

=> A-B = (1.2+2.3+3.4+4.5+...+98.99) - (1.1+2.2+3.3+...+98.98)

A-B = (1.2-1.1) + (2.3-2.2) + (3.4-3.3) + (4.5-4.4) + ...+ (98.99-98.98)

A-B = 1.(2-1) + 2.(3-2) +3.(4-3) + 4.(5-4) + ...+ 98.(99-98)

A-B = 1 +2+3+4+...+98

A-B = (1+98).98:2

A -B = 4851 chia hết cho 4851

20 tháng 3 2018

xem trên mạng

20 tháng 3 2018

Giúp đi

29 tháng 4 2018

C1 : B=\(\frac{1^2}{1.2}.\frac{2^2}{2.3}......\frac{98^2}{98.99}\)=\(\frac{1.1}{1.2}.\frac{2.2}{2.3}......\frac{98.98}{98.99}\)=\(\left(\frac{1.2......98}{1.2.....98}\right).\left(\frac{1.2......98}{2.3......99}\right)\)

                                                   \(1.\frac{1}{99}=\frac{1}{99}\)

C2:Đầu tiên cũng tách ra:\(1^2\)=1.1;\(2^2\)=2.2;...;\(98^2\)=98.98

Xong rút gọn ở tử và mẫu được:\(\frac{1}{2}.\frac{2}{3}.......\frac{98}{99}=\frac{1.2.....98}{2.3.....99}=\frac{1}{99}\)

Bạn thấy cách nào rễ hiểu hơn thì ghi nhé

3 tháng 5 2020

hfghfghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

23 tháng 1 2019

\(A=4+4^2+4^3+....+4^{99}+4^{100}\)

\(=4\left(4+1\right)+4^3\left(4+1\right)+...+4^{99}\left(4+1\right)\)

\(=4\cdot5+4^3\cdot5+...+4^{99}\cdot5\)

\(=5\left(4+4^3+...+4^{99}\right)\)

\(S=1\cdot2+2\cdot3+3\cdot4+...+2018\cdot2019\)

\(3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot3\cdot4+...+2018\cdot2019\cdot3\)

\(3S=1\cdot2\cdot\left(3-0\right)+2\cdot3\left(4-1\right)+....+2018\cdot2019\left(2020-2017\right)\)

\(3S=1\cdot2\cdot3-0\cdot1\cdot2+2\cdot3\cdot4-1\cdot2\cdot3+....+2018\cdot2019\cdot2020-2017\cdot2018\cdot2019\)

\(3S=2018\cdot2019\cdot2020\)

\(S=\frac{2018\cdot2019\cdot2020}{3}\)

23 tháng 1 2019

\(1\cdot2\cdot3+2\cdot3\cdot4+...+48\cdot49\cdot50\)

\(4P=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+...+48\cdot49\cdot50\cdot4\)

\(4P=1\cdot2\cdot3\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+....+48\cdot49\cdot50\left(51-47\right)\)

\(4P=1\cdot2\cdot3\cdot4-0\cdot1\cdot2\cdot3+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+....+48\cdot49\cdot50\cdot51-47\cdot48\cdot49\cdot50\)

\(P=\frac{48\cdot49\cdot50\cdot51}{4}\)

\(Q=1^2+2^2+3^2+....+113^2\)

\(Q=1\left(2-1\right)+2\left(3-1\right)+....+133\left(134-1\right)\)

\(Q=\left(1\cdot2+2\cdot3+133\cdot134\right)-\left(1+2+3+...+133\right)\)

Áp dụng công thức cho nó nhanh:\(1\cdot2+2\cdot3+...+133\cdot134=\frac{133\cdot134\cdot135}{3}\)

\(1+2+3+...+133=\frac{133\cdot134}{2}\)

Đến đây đưa casio ra mak tính

15 tháng 1 2016

A=1.22+2.32+..............+(n-1).n2

A=1.2.2+2.3.3+.......+(n-1).n.n

A=1.2.(3-1)+2.3.(4-1)+.........+(n-1).n.(n+1-1)

A=1.2.3-1.2+2.3.4-2.3+..........+(n-1).n.(n+1)-(n-1).n

A=[1.2.3+2.3.4+.........+(n-1).n.(n+1)]-[1.2+2.3+............+(n-1).n)

Bạn tự làm tiếp nhá

3 tháng 7 2019

a)A=\(\frac{\left(8+100\right).\left[\left(100-8\right):4+1\right]}{2}=\frac{108.242}{2}=13068\) 

b) \(5B=5^2+5^3+...+5^{101}\) 

  \(5B-B=5^{101}-5\) 

\(B=\frac{5^{101}-5}{4}\)

10 tháng 10 2017

ôc cho

11 tháng 10 2017

t k bt làm nên moj ?

28 tháng 9 2016

a/ \(3A=1.2.3+2.3.3+3.4.3+4.5.3+...+29.30.3.\)

\(3A=1.2.3+2.3\left(4-1\right)+3.4.\left(5-2\right)+4.5\left(6-3\right)+...+29.30\left(31-28\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+29.30.31-28.29.30\)

\(3A=29.30.31\Rightarrow A=\frac{29.30.31}{3}=10.29.31=8990\)

c/ \(C=1+2\left(1+1\right)+3\left(2+1\right)+4\left(3+1\right)+...+30\left(29+1\right)\)

\(C=1+2+1.2+2.3+3+3.4+4+...+29.30+30\)

\(C=\left(1+2+3+4+...+30\right)+\left(1.2+2.3+3.4+...+29.30\right)\)

Dấu ngoặc thứ nhất là tính tổng 1 cấp số cộng, dấu ngoặc thứ 2 chính là câu a

b/ Câu b dãy viết ngắn quá chưa tìm ra quy luật

28 tháng 9 2016

a) A = 1.2 + 2.3 + ... + 29.30

=> 3A = 1.2.3 + 2.3.(4-1) + ... + 29.30.(31-28)

          = 1.2.3 + 2.3.4 - 1.2.3 + ... + 29.30.31 - 28.29.30

          = 29.30.31

=> A = \(\frac{29.30.31}{3}=8990\)