Cho hình chữ nhật ABCD kẻ AH vuông góc với đường chéo BD. biết BH=16, AH=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trong giờ thực hành toán, cô giáo chia 6 bạn thành hai nhóm. Cô đưa ra ba bình đựng nước nhưng chưa đầy. Cô tiết lộ lượng nước ở từng bình cho nhóm I và yêu cầu 3 bạn đổ một phần nước từ bình này sang bình kia sao cho sau 3 lần chuyển thì ba bình đựng số nước bằng nhau và cùng bằng 9 lít. Sau khi bàn luận, Minh đã lấy 13  số nước ở chai thứ nhất đổ sáng bình thứ hai, tiếp...
Đọc tiếp

Trong giờ thực hành toán, cô giáo chia 6 bạn thành hai nhóm. Cô đưa ra ba bình đựng nước nhưng chưa đầy. Cô tiết lộ lượng nước ở từng bình cho nhóm I và yêu cầu 3 bạn đổ một phần nước từ bình này sang bình kia sao cho sau 3 lần chuyển thì ba bình đựng số nước bằng nhau và cùng bằng 9 lít. Sau khi bàn luận, Minh đã lấy 13  số nước ở chai thứ nhất đổ sáng bình thứ hai, tiếp theo Long đổ 14  số nước hiện có  ở bình thứ hai sang bình thứ ba và sau đó Hoa đổ 110  lượng nước ở bình thứ ba hiện có sang bình thứ nhất. Tới đây các bạn đã hoàn thành yêu cầu của cô. Còn nhiệm vụ dành cho nhóm II là phải tìm lượng nước ban đầu ở mỗi bình.

Nếu là thành viên của nhóm II, bạn sẽ tính toán như thế nào?

0
NM
13 tháng 9 2021

undefined

ta có :

\(\hept{\begin{cases}AB^2=BD.BC=9\left(9+16\right)=225\\AC^2=CD.CB=16\left(16+9\right)=400\end{cases}}\Leftrightarrow\hept{\begin{cases}AB=15\\AC=20\end{cases}}\)

nên diện tích ABC là : \(\frac{1}{2}AB.AC=\frac{1}{2}.15.20=150cm^2\)

 Câu hỏi 1 (1 điểm)Cho hàm số bậc nhất: $y=f(x)=-5x+10$y=ƒ (x)=−5x+10 Hệ số a bằng là hàm số đồng biếnlà hàm số nghịch biến Câu hỏi 2 (1 điểm)Cho hàm số bậc nhất: $y=(4+b).x-3$y=(4+b).x−3Giá trị của $b$b để hàm số đồng biến là: b>4b<4b>-4b<-4Câu hỏi 3 (1 điểm)Cho hàm số bậc nhất: $y=f(x)=-7x+b$y=ƒ (x)=−7x+b Biết rằng khi $x=1$x=1 thì $y=-12$y=−12Hệ số b bằng  Câu hỏi 4 (1...
Đọc tiếp

 

olm.pngCâu hỏi 1 (1 điểm)

Cho hàm số bậc nhất: $y=f(x)=-5x+10$y=ƒ (x)=5x+10 
Hệ số a bằng 

là hàm số đồng biến
là hàm số nghịch biến
 
olm.pngCâu hỏi 2 (1 điểm)

Cho hàm số bậc nhất: $y=(4+b).x-3$y=(4+b).x3
Giá trị của $b$b để hàm số đồng biến là: 

b>4
b<4
b>-4
b<-4
olm.pngCâu hỏi 3 (1 điểm)

Cho hàm số bậc nhất: $y=f(x)=-7x+b$y=ƒ (x)=7x+b 
Biết rằng khi $x=1$x=1 thì $y=-12$y=12
Hệ số b bằng 

 
olm.pngCâu hỏi 4 (1 điểm)

Biết rằng đồ thị hàm số $y=9+ax$y=9+ax đi qua điểm $M(2;-5)$M(2;5)
Hệ số a bằng 

olm.pngCâu hỏi 5 (1 điểm)

Tìm giá trị của hàm số y = f(x) = -5x + 8 khi x = 7.

 

f(7) = 

 
olm.pngCâu hỏi 6 (1 điểm)

Tìm điều kiện để đồ thị của hai hàm bậc nhất $y=(6m+4)x+5n+7$y=(6m+4)x+5n+7 và $y=(-7-8m)x-9$y=(78m)x9 là hai đường thẳng cắt nhau.

$m\ne\frac{-11}{14};m\ne\frac{-7}{4}$m1114 ;m74 

$m\ne\frac{-11}{14}$m1114 

$n=\frac{5}{7}$n=57 

$n\ne\frac{5}{7}$n57 

olm.pngCâu hỏi 7 (1 điểm)

Cho hàm số y = (-3 + 3m)x + 5m - 4. Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 6 khi m = 

 
olm.pngCâu hỏi 8 (1 điểm)

Trên cùng một đường tròn lấy hai dây EF và PQ. Biết EF lớn hơn PQ. Hãy so sánh khoảng cách từ tâm đường tròn đến hai dây đó ?

Khoảng cách từ tâm đến EF < Khoảng cách từ tâm đến PQ
Khoảng cách từ tâm đến EF > Khoảng cách từ tâm đến PQ
Khoảng cách từ tâm đến EF = Khoảng cách từ tâm đến PQ
olm.pngCâu hỏi 9 (1 điểm)

Cho đường tròn tâm (O; 6cm). Gọi A là một điểm trên đường tròn (O). Dây BC vuông góc với OA tại trung điểm của OA. Tính độ dài dây cung BC.

BC=3\sqrt{3}cmBC=33cm
BC=5\sqrt{3}cmBC=53cm
BC=4\sqrt{3}cmBC=43cm
BC=6\sqrt{3}cmBC=63cm
 
olm.pngCâu hỏi 10 (1 điểm)

Cho hình vuông ABCD, O là giao điểm hai đường chéo, OA=\sqrt{3}\left(cm\right)OA=3(cm).  Vẽ đường tròn (B ; 2cm). Khi đó khẳng định nào dưới đây là đúng?

A, D, C, nằm trong (B); O nằm ngoài (B).
O nằm trong (B); A, C, D nằm ngoài (B).
O nằm trên (B); A, C, D nằm trong (B).
O nằm trên (B); A, C, D nằm ngoài (B).
1
17 tháng 9 2018

mong cac ban giup do

20 tháng 5 2016

Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có

a+b-c>0; b+c-a>0; b+c-a>0

áp dụng BĐT \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\)\(\frac{4}{x+y}\) ta có:

\(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)=\(\ge\)\(\frac{4}{a+b-c+b+c-a}\)=\(\frac{4}{2b}\)=\(\frac{2}{b}\)(1)

\(\frac{1}{a+b-c}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{4}{a+b-c+c+a-b}\)=\(\frac{4}{2a}\)=\(\frac{2}{a}\)(2)

\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{4}{b+c-a+c+a-b}\)=\(\frac{4}{2c}\)=\(\frac{2}{c}\)(3)

cộng vế với vế của(1);(2) và (3) ta có:

\(\frac{2}{a+b-c}\)+\(\frac{2}{b+c-a}\)+\(\frac{2}{c+a-b}\)\(\ge\)\(\frac{2}{b}\)+\(\frac{2}{a}\)+\(\frac{2}{c}\)

<=>\(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)

dấu = xảy ra khi a=b=c

22 tháng 11 2021

???????????????????????///