Tính giá trị biểu thức P = (a^2 + b) - (2a^2 + b) + 2(ab + 2021b) biết a - 2b = 20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2023

\(P=\left(a^2+b\right)-\left(2a^2+b\right)+2\left(ab+2021\right)\)

\(P=a^2+b-2a^2+b+2ab+4042\)

\(P=-a^2+2ab+4042\)

\(P=-a\left(a-2b\right)+4042\)

Để cho: \(a-2b=2021\)

\(\Rightarrow P=-a.2021+4042\)

\(P=-2021a+4042\)

Vậy: \(P=-2021a+4042\)

2 tháng 3 2023

không có giá trị cụ thể hả bạn

21 tháng 2 2023

\(P=\left(a^2+b\right)-\left(2a^2+b\right)+2\left(ab+2021\right)\)

\(=a^2+b-2a^2-b+2ab+4042\)

\(=-a^2+2ab+4042\)

\(=-a\left(a-2b\right)+4042\)

Đề cho \(a-2b=2021\)

\(\Rightarrow P=-a.2021+4042\)

\(=-2021a+4042\)

Vậy \(P=-2021a+4042\)

14 tháng 2 2024

4042 thêm b vào

 

2 tháng 12 2018

An-250=mấy

2 tháng 12 2018

A = 250  + 251 + 252 + .... + 22017 + 22018

=> 2A = 251 + 252 + 253 + .... + 22018 + 22019

=> 2A - A = ( 251 + 252 + 253 + ... + 22018 + 22019 ) - ( 250 + 251 + ... + 22017 + 22018 )

=> A = 22019 - 250

1 tháng 4 2018

Theo bđt cô si ta có : \(x+y\ge2\sqrt{xy}\) <=> \(1\ge2\sqrt{xy}\)

=> \(\sqrt{xy}\le\frac{1}{2}\) <=> \(\sqrt{\frac{1}{xy}}\ge2\)

Theo bđt cô si : \(P=\frac{a^2}{x}+\frac{b^2}{y}\ge2\sqrt{\frac{a^2b^2}{xy}}=2ab\sqrt{\frac{1}{xy}}=2ab.2=4ab\)

Vậy giá trị nhỏ nhất của P=4ab khi x=y=1/2

6 tháng 5 2016

Ta có: ab = 10a + b 

Nên 10a + b = a + b2 

       10a + b - a = b2

        9a + b = b2

           9a      = b2 - b =b(b - 1)

=> b = 9 (vì b không thể nào bằng a được) => a = 8

Thử 89 = 8 + 92