K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

\(A=\frac{1}{2}:\frac{4}{3}:\frac{-5}{4}:\frac{6}{5}:...:\frac{-101}{100}\) 

<=> \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{-4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{-100}{101}\)

Trong biểu thức  A có số số âm là (100-4):2 + 1 =49 số

Vậy A là số âm => \(A=-\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{100}{101}\right)\)

=> \(A=-\left(\frac{1}{2}\cdot\frac{3}{101}\right)=\frac{-3}{202}\)

21 tháng 3 2018

thanks bn nhiều nha Hiếu

25 tháng 2 2020

D = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1.\right)\)

=>\(-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{100^2}.\right)\)

=>\(-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)

=>\(-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\right)\)

=>\(-\left(\frac{1.2.3...99}{2.3.4....100}\right)\left(\frac{3.4.5....101}{2.3.4....100}\right)\)

=>\(-\left(\frac{1}{100}.\frac{101}{2}\right)\)

=>\(D=-\frac{101}{200}\)

\(11-\left(3x-1\right)=\frac{9}{2}-\left(5-3,5x\right)\)

\(=>11-3x+1=\frac{9}{2}-5+3,5x\)

\(=>-3x+12=3,5x-\frac{1}{2}\)

\(=>-3x-3,5x=-\frac{1}{2}-12\)

\(=>-6,5x=-12,5\)

\(=>x=\frac{-12,5}{-6,5}=\frac{25}{13}\)

Ủng hộ nha

3 tháng 7 2016

\(11-\left(3x-1\right)=\frac{9}{2}-\left(5-3,5x\right)\)

\(11-3x+1=\frac{9}{2}-5+3,5x\)

\(12-3x=-\left(0,5\right)+3,5x\)

\(12,5-3x=3,5x\)

\(12,5=6,5x\)

\(x=12,5:6,5=\frac{25}{13}\)

15 tháng 4 2017

1/

\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

n-31-12-24-4
n42517-1

Vậy...

15 tháng 4 2017

câu 2 dễ ẹt

21 tháng 7 2017

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{x\left(x+1\right)}=\frac{215}{216}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{215}{216}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{215}{216}\)

\(\Leftrightarrow\frac{1}{x+1}=1-\frac{215}{216}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{216}\)

\(\Leftrightarrow x=216-1=215\)

9 tháng 2 2021

Xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Khi đó: 
\(1-\frac{2}{2.3}=\frac{1.4}{2.3}\) ; \(1-\frac{2}{3.4}=\frac{2.5}{3.4}\) ; ... ; \(1-\frac{2}{101.102}=\frac{100.103}{101.102}\)

\(\Rightarrow M=\frac{1.4}{2.3}\cdot\frac{2.5}{3.4}\cdot\cdot\cdot\frac{100.103}{101.102}\)

\(M=\frac{\left(1.2...100\right).\left(4.5...103\right)}{\left(2.3...101\right).\left(3.4...102\right)}=\frac{103}{101.3}=\frac{103}{303}\)

Vậy \(M=\frac{103}{303}\)