Bài 7: Cho nửa đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Xét tứ giác CMHN có \(\widehat{CMH}=\widehat{CNH}=\widehat{MCN}=90^0\)
nên CMHN là hình chữ nhật

b: Gọi I là trung điểm của BH

=>I là tâm của đường tròn đường kính BH

ΔHNB vuông tại N

=>N nằm trên đường tròn đường kính BH

=>N nằm trên (I)

=>IH=IN

=>\(\widehat{IHN}=\widehat{INH}\)

mà \(\widehat{IHN}=\widehat{BAC}\)(hai góc đồng vị, HN//AC)

nên \(\widehat{INH}=\widehat{BAC}\)

CMHN là hình chữ nhật

=>\(\widehat{MCH}=\widehat{MNH}\)

=>\(\widehat{MNH}=\widehat{ACH}\)

\(\widehat{INM}=\widehat{INH}+\widehat{MNH}\)

\(=\widehat{BAC}+\widehat{ACH}=90^0\)

=>MN là tiếp tuyến của (I)

hay MN là tiếp tuyến của đường tròn đường kính BH

d: ΔCHO vuông tại H

=>CH<=CO

mà CH=MN

nên MN<=CO

Dấu '=' xảy ra khi H trùng với O

=>CO\(\perp\)AB tại O

Xét ΔCAB có

CO là đường trung tuyến

CO là đường cao

Do đó; ΔCAB cân tại C

Xét ΔCAB cân tại C có \(\widehat{ACB}=90^0\)

nên ΔCAB vuông cân tại C

=>\(\stackrel\frown{CA}=\stackrel\frown{CB}\)

=>C là điểm chính giữa của cung AB

28 tháng 1 2022

Bạn tự vẽ hình.

a, \(xy\) cách \(\left(O\right)\) một khoảng \(OK=a\)

Mà \(OK< R\)

=> \(K\in xy\) và  \(xy\) cắt \(\left(O\right)\) tại hai điểm D và E

b, \(OK\perp xy\) đồng thời \(OK\perp AK\) => \(\widehat{AKO}=90^o\) => K thuộc đường tròn đường kính AO (1)

AC, AB là 2 tiếp tuyến => \(\hept{\begin{cases}AC\perp CO\\AB\perp BO\end{cases}}\)=> \(\hept{\begin{cases}\widehat{ACO}=90^o\\\widehat{ABO}=90^o\end{cases}}\)

=> B, C thuộc đường kính BC (2)

(1); (2) => K, B, C thuộc đường kính BC

Hay O, A, B, C, K cùng thuộc đường kính BC

c, \(AK\perp KO\)

=> \(\widehat{AKS}=90^o\)

=> K thuộc đường tròn đường kính AS (3)

=> \(AO\perp BC\) tại M

=> \(\widehat{AMS}=90^o\)

=> M thuộc đường tròn đường kính AS (4)

(3); (4) => AMKS nội tiếp

18 tháng 11 2021

M N C A B O E I F x y

a/ C và M cùng nhìn AO dưới 1 góc vuông => C và M thuộc đường tròn đường kính AO => ACOM là tư giác nội tiếp

b/

Xét tg vuông BON có

\(BN=\sqrt{OB^2-ON^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

\(\sin\widehat{OBN}=\frac{ON}{OB}=\frac{R}{2R}=\frac{1}{2}\Rightarrow\widehat{OBN}=30^o\)

Ta có \(BN=BC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm băng nhau)

Xét tg vuông BOC

\(\sin\widehat{OBC}=\frac{OC}{OB}=\frac{R}{2R}=\frac{1}{2}\Rightarrow\widehat{OBC}=30^o\)

\(\Rightarrow\widehat{NBC}=\widehat{OBN}+\widehat{OBC}=30^o+30^o=60^o\)

c/

Ta có 

E; F là trung điểm của CM và CN (hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm vuông góc và chia đôi dây cung nối 2 tiếp điểm)

=> EF là đường trung bình của \(\Delta MCN\) => EF//MN (1)

Ta có

\(AM\perp MN;BN\perp MN\) => AM//BN \(\Rightarrow\frac{IA}{IN}=\frac{IM}{IB}=\frac{AM}{BN}\) (talet trong tam giác)

Mà \(AM=AC;BN=BC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm băng nhau)

\(\Rightarrow\frac{IA}{IN}=\frac{IM}{IB}=\frac{AC}{BC}\) (2)

Ta có

\(\widehat{MCN}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(CM\perp AO;CN\perp BO\left(cmt\right)\Rightarrow\widehat{MCN}=\widehat{AOB}=90^o\)

\(\Rightarrow CM\perp AO;BO\perp AO\) => CM//BO

Xét \(\Delta ABO\) có CM//BO \(\Rightarrow\frac{EA}{EO}=\frac{AC}{BC}\) (3)

Từ (2) và (3) \(\Rightarrow\frac{EA}{EO}=\frac{IA}{IN}\)

Nối E với I, xét \(\Delta AON\) có \(\frac{EA}{EO}=\frac{IA}{IN}\) => EI//MN (Talet đảo trong tam giác) (4)

Từ (1) và (4) => EF trung EI (Từ 1 điểm ngoài 1 đường thẳng chỉ duy nhất dựng được 1 đường thẳng // với đường thẳng đã cho)

=> E; I; F thẳng hàng

2 tháng 12 2023

ai trả lời đc chx ạ