Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
Vì \(2^{40}< 2^{50}\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)hay \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(0,3\right)^{20}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)
Vì \(0,09< 0,1\Rightarrow\left(0,09\right)^{10}< \left(0,1\right)^{100}\)
hay \(\left(0,3\right)^{20}< \left(0,1\right)^{10}\)
a, Lấy A-B
= 1+2+....+2^49+2^50 - 2^51
= 1+2+....+ 2^49+ 2^50 . ( 1-2)
= 1+2+.....+ 2^49 - 2^50
= 1+2+....+2^48 - 2^49
......
......
= 1+2+2^2-2^3
= 1+2-2^2
= 1-2 = -1 <0 ===> A<B
b, 2^300 > 2^200
a, lấy A-B
nếu kết quả ra <0 thì chứng tỏ A<B
cái
...........
...........
có nghĩa là làm tương tự
Lấy A-B
1+2+....+2^49+2^50 - 2^51
= 1+2+....+ 2^49+ 2^50 . ( 1-2)
= 1+2+.....+2^48 + 2^49 - 2^50
= 1+2+....2^47+2^48 - 2^49
Lấy 2 số bôi đen trừ đi nhau sẽ đc -2^48
= 1+2+....+2^47 - 2^48
Rồi lại làm tương tự
đến khi ra đuoc
1+2+2^2-2^3
= 1+2-2^2
= 1-2 = -1 <0 ===> A<B
Ta có : 333^444=(3.111)^444=3^444.111^444
444^333=(4.111)^333=4^333.111^333
Ta lại có : 3^444=(3^4)^111=81^111
4^333=(4^3)^111=64^111
vì 3^444>4^333
mặt khác 111^333<111^444
suy ra 4^333.111^333<3^444.111^444
vậy 333^444>444^333
a) \(2^{91}>2^{90}=\left(2^5\right)^{18}=32^{18}>25^{18}=5^{36}>5^{35}\)
\(\Rightarrow2^{91}>5^{35}\)
b) \(4^{200}=16^{100}\)
\(3^{300}=\left(3^3\right)^{100}=27^{100}\)
vì \(16^{100}< 27^{100}\)
\(\Rightarrow4^{200}< 3^{300}\)
a/ ta co \(50^{20}=\left(50^2\right)^{10}\)
\(\left(50^2\right)^{10}=2500^{10}< 2550^{10}\)
Hay \(50^{20}< 2550^{10}\)
b/ ta có \(3^{75}=\left(3^3\right)^{25}\)
\(5^{50}=\left(5^2\right)^{25}\)
\(\Rightarrow\left(3^3\right)^{25}=27^{25}\)
\(\Rightarrow\left(5^2\right)^{25}=25^{25}\)
Vay \(3^{75}>5^{50}\)
\(a,2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8>8^8\)
\(\Rightarrow3^{16}>2^{24}\)
\(b,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow3^{200}>2^{300}\)
Bài 1: a) (2x+1)2 = 25
(2x+1)2 = 52
=> 2x + 1 = 5 hoặc 2x+1 = -5
=> x=2 hoặc x=-3
b) 2x+2 - 2x = 96
<=> 2x . 22 - 2x = 96
<=> 2x(4-1) =96
<=>2x = 96 :3 = 32 = 25
<=> x = 5
c) (x-1)3 = 125
<=> (x-1)3 = 53
<=> x-1=5
<=>x= 5 +1 = 6
a) \(2^{24}< 3^{16}\)
b) \(3^{34}>5^{20}\)
c) \(\left(3\cdot24\right)^{100}< 3^{300}+4^{300}\)
d) \(199^{20}>200^{15}\)
a, Ta có: \(\left(\dfrac{1}{2}\right)^{300}=\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\)
\(\left(\dfrac{1}{3}\right)^{200}=\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\)
=> \(\left(\dfrac{1}{8}\right)^{100}>\left(\dfrac{1}{9}\right)^{100}\)=> \(\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
b, Ta có: \(\left(\dfrac{1}{3}\right)^{75}=\left[\left(\dfrac{1}{3}\right)^3\right]^{25}=\left(\dfrac{1}{27}\right)^{25}\)
\(\left(\dfrac{1}{5}\right)^{50}=\left[\left(\dfrac{1}{5}\right)^2\right]^{25}\)\(=\left(\dfrac{1}{25}\right)^{25}\)
Do \(\left(\dfrac{1}{27}\right)^{25}< \left(\dfrac{1}{25}\right)^{25}=>\left(\dfrac{1}{3}\right)^{75}< \left(\dfrac{1}{5}\right)^{50}\)
Kiểm tra lại bài nhé, học tốt!!