K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

a) \(2^{24}< 3^{16}\)

b) \(3^{34}>5^{20}\)

c) \(\left(3\cdot24\right)^{100}< 3^{300}+4^{300}\)

d) \(199^{20}>200^{15}\)

15 tháng 9 2016

2300 VÀ 3200

2300 = ( 23)100 = 8100

3200 = ( 32)100 = 9100

VÌ 9100 > 8100 => 2300 < 3200

NHỮNG CON KHÁC BẠ ĐƯA VỀ CÙNG CƠ SỐ SAU ĐÓ SO SÁNH MŨ SỐ LÀ ĐC

27 tháng 7 2018

\(a,2^{24}=\left(2^3\right)^8=8^8\)

\(3^{16}=\left(3^2\right)^8=9^8>8^8\)

\(\Rightarrow3^{16}>2^{24}\)

\(b,2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)

\(\Rightarrow3^{200}>2^{300}\)

27 tháng 7 2018

trên google có lên mà chép tôi xem zồi mà cx dễ bnj tự làm đi

5 tháng 8 2018

a) \(2^{24}=2^{3.8}=8^8\)      \(3^{16}=3^{2.8}=9^8\)

Do \(8^8< 9^8\)=>   \(2^{24}< 3^{16}\)

b)  \(3^{200}=3^{2.100}=9^{100}\);      \(2^{300}=2^{3.100}=8^{100}\)

Do  \(9^{100}>8^{100}\)=>  \(3^{200}>2^{300}\)

c)  \(7^{20}=7^{4.5}=2401^5>71^5\)

Vậy  \(7^{20}>71^5\)

d)  \(\left(-2\right)^{30}=2^{30}=2^{3.10}=8^{10}\);      \(\left(-3\right)^{20}=3^{20}=3^{2.10}=9^{10}\)

Do  \(8^{10}< 9^{10}\)nên   \(\left(-2\right)^{30}< \left(-3\right)^{20}\)

e) \(\left(-5\right)^9< 0\);   \(\left(-2\right)^{18}=2^{18}>0\)

Vậy  \(\left(-5\right)^9< \left(-2\right)^{18}\)

25 tháng 9 2019

a, \(2^{24}=\left(2^3\right)^8=8^8\)

\(3^{16}=\left(3^2\right)^8=9^8\)

Vì 8 < 9 nên :

=> \(8^8< 8^9\)

\(\Rightarrow2^{24}< 3^{16}\)

25 tháng 9 2019

b, \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

\(\Rightarrow8^{100}< 9^{100}\) ( vì 8 < 9 )

\(\Rightarrow2^{300}< 3^{200}\)

15 tháng 7 2019

Ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)

\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)

Vì \(2^{40}< 2^{50}\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)hay \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

15 tháng 7 2019

Ta có: \(\left(0,3\right)^{20}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)

Vì \(0,09< 0,1\Rightarrow\left(0,09\right)^{10}< \left(0,1\right)^{100}\)

hay \(\left(0,3\right)^{20}< \left(0,1\right)^{10}\)

20 tháng 9 2019

\(a,\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[2^4-4^2\right]\)

\(=\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[16-16\right]\)

\(=\left[2^{17}+16^2\right]\left[9^{15}-3^{15}\right]\cdot0=0\)

\(b,\left[8^{2017}-8^{2015}\right]\cdot\left[8^{2014}\cdot8\right]\)

\(=8^{2015}\left[8^2-1\right]\cdot8^{2015}\)

\(=8^{2015}\cdot63\cdot8^{2015}=8^{4030}\cdot63\)sửa lại câu b , có vấn đề rồi

\(c,\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8+\left[2^3\right]^3}{2^5\cdot2^3}=\frac{2^8+2^9}{2^8}=\frac{2^8\left[1+2\right]}{2^8}=3\)

2.a, \(2^6=\left[2^3\right]^2=8^2\)

Mà 8 = 8 nên 82 = 82 hay 26 = 82

b, \(5^3=5\cdot5\cdot5=125\)

\(3^5=3\cdot3\cdot3\cdot3\cdot3=243\)

Mà 125 < 243 nên 53 < 35

c, 26 = [23 ]2 = 82

Mà 8 > 6 nên 82 > 62 hay 26 > 62

d, 7200 = [72 ]100 = 49100

6300 = \(\left[6^3\right]^{100}\)= 216100

Mà 49 < 216 nên 49100 < 216100 hay 7200 < 6300

16 tháng 10 2017

b, \(99^{20}=99^{10}.99^{10}\)

\(9999^{10}=99^{10}.101^{10}\)

Do \(99^{10}< 101^{10}\Rightarrow9^{20}< 9999^{10}\)

16 tháng 10 2017

Mk chỉ làm đc câu a thui nha 

\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

Vậy \(8^{100}< 9^{100}\)

Nên : \(2^{300}< 3^{200}\)

8 tháng 7 2016

a)Ta có:

\(2^{24}=\left(2^6\right)^4=64^4\)

\(3^{16}=\left(3^4\right)^4=81^4\)

Vì 644<814 nên 224<316

b)Ta có:

\(2^{30}=\left(2^3\right)^{10}=8^{10}\)

\(3^{20}=\left(3^2\right)^{10}=9^{10}\)

Vì 810<910 nên 230<320

8 tháng 7 2016

a, 224 = 23.8 = (23)8 = 88

    316 = 32.8 = (32)8 = 98

Có 88 < 98

=> 224 < 316

b, 230 = 23.10 = (23)10 = 810

   320 = 32.10 = (32)10 = 910

Vì 810 < 910

=> 230 < 320