Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2300 VÀ 3200
2300 = ( 23)100 = 8100
3200 = ( 32)100 = 9100
VÌ 9100 > 8100 => 2300 < 3200
NHỮNG CON KHÁC BẠ ĐƯA VỀ CÙNG CƠ SỐ SAU ĐÓ SO SÁNH MŨ SỐ LÀ ĐC
\(a,2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8>8^8\)
\(\Rightarrow3^{16}>2^{24}\)
\(b,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow3^{200}>2^{300}\)
a) \(2^{24}=2^{3.8}=8^8\) \(3^{16}=3^{2.8}=9^8\)
Do \(8^8< 9^8\)=> \(2^{24}< 3^{16}\)
b) \(3^{200}=3^{2.100}=9^{100}\); \(2^{300}=2^{3.100}=8^{100}\)
Do \(9^{100}>8^{100}\)=> \(3^{200}>2^{300}\)
c) \(7^{20}=7^{4.5}=2401^5>71^5\)
Vậy \(7^{20}>71^5\)
d) \(\left(-2\right)^{30}=2^{30}=2^{3.10}=8^{10}\); \(\left(-3\right)^{20}=3^{20}=3^{2.10}=9^{10}\)
Do \(8^{10}< 9^{10}\)nên \(\left(-2\right)^{30}< \left(-3\right)^{20}\)
e) \(\left(-5\right)^9< 0\); \(\left(-2\right)^{18}=2^{18}>0\)
Vậy \(\left(-5\right)^9< \left(-2\right)^{18}\)
a, \(2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
Vì 8 < 9 nên :
=> \(8^8< 8^9\)
\(\Rightarrow2^{24}< 3^{16}\)
b, \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(\Rightarrow8^{100}< 9^{100}\) ( vì 8 < 9 )
\(\Rightarrow2^{300}< 3^{200}\)
Ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
Vì \(2^{40}< 2^{50}\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)hay \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(0,3\right)^{20}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)
Vì \(0,09< 0,1\Rightarrow\left(0,09\right)^{10}< \left(0,1\right)^{100}\)
hay \(\left(0,3\right)^{20}< \left(0,1\right)^{10}\)
\(a,\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[2^4-4^2\right]\)
\(=\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[16-16\right]\)
\(=\left[2^{17}+16^2\right]\left[9^{15}-3^{15}\right]\cdot0=0\)
\(b,\left[8^{2017}-8^{2015}\right]\cdot\left[8^{2014}\cdot8\right]\)
\(=8^{2015}\left[8^2-1\right]\cdot8^{2015}\)
\(=8^{2015}\cdot63\cdot8^{2015}=8^{4030}\cdot63\)sửa lại câu b , có vấn đề rồi
\(c,\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8+\left[2^3\right]^3}{2^5\cdot2^3}=\frac{2^8+2^9}{2^8}=\frac{2^8\left[1+2\right]}{2^8}=3\)
2.a, \(2^6=\left[2^3\right]^2=8^2\)
Mà 8 = 8 nên 82 = 82 hay 26 = 82
b, \(5^3=5\cdot5\cdot5=125\)
\(3^5=3\cdot3\cdot3\cdot3\cdot3=243\)
Mà 125 < 243 nên 53 < 35
c, 26 = [23 ]2 = 82
Mà 8 > 6 nên 82 > 62 hay 26 > 62
d, 7200 = [72 ]100 = 49100
6300 = \(\left[6^3\right]^{100}\)= 216100
Mà 49 < 216 nên 49100 < 216100 hay 7200 < 6300
b, \(99^{20}=99^{10}.99^{10}\)
\(9999^{10}=99^{10}.101^{10}\)
Do \(99^{10}< 101^{10}\Rightarrow9^{20}< 9999^{10}\)
a)Ta có:
\(2^{24}=\left(2^6\right)^4=64^4\)
\(3^{16}=\left(3^4\right)^4=81^4\)
Vì 644<814 nên 224<316
b)Ta có:
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{20}=\left(3^2\right)^{10}=9^{10}\)
Vì 810<910 nên 230<320
a, 224 = 23.8 = (23)8 = 88
316 = 32.8 = (32)8 = 98
Có 88 < 98
=> 224 < 316
b, 230 = 23.10 = (23)10 = 810
320 = 32.10 = (32)10 = 910
Vì 810 < 910
=> 230 < 320
a) \(2^{24}< 3^{16}\)
b) \(3^{34}>5^{20}\)
c) \(\left(3\cdot24\right)^{100}< 3^{300}+4^{300}\)
d) \(199^{20}>200^{15}\)