Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính:
\(3.\left(x-2\right)-4.\left(2x+1\right)-5.\left(2x+3\right)=50\)
\(\Rightarrow3x-6-\left(8x+4\right)-\left(10x+15\right)=50\)
\(\Rightarrow3x-6-8x-4-10x-15=50\)
\(\Rightarrow-15x-25=50\)
\(\Rightarrow-15x=50+25\)
\(\Rightarrow-15x=75\)
\(\Rightarrow x=75:\left(-15\right)\)
\(\Rightarrow x=-5.\)
Vậy \(x=-5.\)
Chúc bạn học tốt!
\(3x^2-3xy-y-5x=-20\)
\(\Rightarrow\)\(3x\left(x-y\right)-y-5x=-20\)
\(\Rightarrow\)\(3x\left(x-y\right)+x-y-6x=-20\)
\(\Rightarrow\)\(3x\left(x-y\right)+\left(x-y\right)-6x=-20\)
\(\Rightarrow\)\(\left(x-y\right)\left(3x+1\right)-6x=-20\)
\(\Rightarrow\)\(\left(x-y\right)\left(3x+1\right)-6x-2=-22\)
\(\Rightarrow\)\(\left(x-y\right)\left(3x+1\right)-\left(6x+2\right)=-22\)
\(\Rightarrow\left(x-y\right)\left(3x+1\right)-2\left(3x+1\right)=-22\)
\(\Rightarrow\left(3x+1\right)\left(x-y-2\right)=-22\)
Ta có bảng sau:
\(3x+1\) | \(-1\) | \(1\) | \(-22\) | \(22\) |
\(x\) | \(x\notin Z\) | \(0\) | \(x\notin Z\) | \(7\) |
\(x-y-2\) | \(-22\) | \(-1\) | ||
\(y\) | \(-20\) | \(6\) |
Vậy ta có 2 bộ (x,y) là (0;-20) và (7;6)
Chúc bạn học tốt!
\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)
2x - 3y + 4z = 5, 34
=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)
Vậy ...
b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)
\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)
\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)
Vậy ...
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
2) Tìm x :
a) \(3x-7⋮x+2\)
Ta có : \(x+2⋮x+2\Rightarrow3x+6⋮x+2\)
\(\Rightarrow3x-7-\left(3x+6\right)⋮x+2\)
\(\Rightarrow-13⋮x+2\) hay \(x+2\inƯ\left(-13\right)=\left\{1,-1,13,-13\right\}\)
\(\Rightarrow x\in\left\{-1,-3,11,-15\right\}\)
Vậy : \(x\in\left\{-1,-3,11,-15\right\}\)
b) \(\left(4x+5\right)⋮\left(x-11\right)\)
Ta có : \(x-11⋮x-11\Rightarrow4x-44⋮x-11\)
\(\Leftrightarrow4x+5-\left(4x-44\right)⋮x-11\)
\(\Leftrightarrow49⋮x-11\) hay \(x-11\inƯ\left(49\right)=\left\{1,-1,49,-49\right\}\)
\(\Leftrightarrow x\in\left\{12,10,60,-38\right\}\)
Vậy : \(x\in\left\{12,10,60,-38\right\}\)
c) \(xy+2x-y=4\)
\(\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=4-2=2\)
\(\Leftrightarrow\left(x-1\right).\left(y+2\right)=2\)
Do \(x\in Z\Rightarrow\left\{{}\begin{matrix}x-1\in Z\\y+2\in Z\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)\) và \(\left(y+2\right)\) là các cặp ước của 2
Ta có bảng giá trị sau :
\(x-1\) | 2 | -2 | 1 | -1 |
\(x\) | 3 | -1 | 2 | 0 |
\(y+2\) | 1 | -1 | 2 | -2 |
\(y\) | -1 | -3 | 0 | -4 |
Đánh giá | Chọn | Chọn | Chọn | Chọn |
Vậy : \(\left(x,y\right)\in\left\{\left(3,-1\right);\left(-1,-3\right);\left(2,0\right);\left(0,-4\right)\right\}\)
Ta có : \(\frac{x+1}{5}=\frac{x-2}{4}\)
=> 4(x + 1) = 5(x - 2)
=> 4x + 4 = 5x - 10
=> 4x - 5x = -10 - 4
=> -x = -14
=> x = 14
Thay x = 14 vào ta có : \(\frac{14-2}{4}=\frac{5y+1}{28}\Rightarrow\frac{84}{28}=\frac{5y+1}{28}\)
=> 5y + 1 = 84
=> 5y = 83
=> y = 83/5
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~