Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét :
\(444^{555}=\left(444^5\right)^{111}=\left(111^5.4^5\right)^{111}=\left(111^5.1024\right)^{111}\)
\(555^{444}=\left(555^4\right)^{111}=\left(111^4.5^4\right)^{111}=\left(111^4.625\right)^{111}\)
Mà \(111^5.1024>111^4.625\)
\(\Rightarrow444^{555}>555^{444}\)
ta có: \(444^{555}=444^{\left(111\times5\right)}=\left(444^5\right)^{111}\)
\(555^{444}=555^{\left(111\times4\right)}=\left(555^4\right)^{111}\)
ta có: \(444^5=\left(4\times111\right)^5=4^5\times111^5\)= \(1024\times111\times111^4\)
\(555^4=\left(5\times111\right)^4=5^4\times111^4\) = \(625\times111^4\)
ta có: \(1024\times111\times111^4\) > \(625\times111^4\)
\(\Rightarrow\)\(444^5>555^4\)
mình làm hơi tắt bạn tự hoàn thiện nha.
Ta co :
3200 va 2300
3200=(32)100=9100
2300=(23)100=8100
Ma : 9100>8100
Vay suy ra 3200>2300
tu lm tiep nhe
a)\(333^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Từ \(\hept{\begin{cases}81^{111}>64^{111}\\111^{444}>111^{333}\end{cases}}\Rightarrow81^{111}.111^{444}>64^{111}.111^{333}\Rightarrow333^{444}>444^{333}\)
b)\(5^{300}=\left(5^2\right)^{150}=25^{150};4^{453}=\left(4^3\right)^{151}=64^{151}\)
Vì 25150<64151 => 5300<4453
c)\(5^{217}>5^{216}=\left(5^3\right)^{72}=125^{72}>119^{72}\) => \(5^{217}>119^{72}\)
444^555 = (444^5)^111 = (111^5.4^5)^111.
555^444 = (555^4)^111 = (111^4.5^4)^111.
Do 111^5 > 111^4 va 4^5 > 5^4 nen 111^5.4^5 > 111^4.5^4
a) 340 = (34) 10 = 8110
430 = (43)10 = 64 10
Vì 81 10 > 6410 nên 340 > 430
b) 222555 = 111555. 2555 = 111555 . (25)111 = 111555 . 32111
555222 = 111555 . 5222 = 111555. (52)111 = 111555 . 25111
Vì 111555 . 32111> 111555 . 25 111 nên 222555 > 555222
k cho mk nhé! Mk làm đầu tiên luôn đấy! Trình bày ngắn gọn mà sạch đẹp
555^444 = (5.111)^444 = 5^444.111^444
444^555 = (4.111)^555 = 4^555.111^555
5^444 = 5^4.111 = (5^4)^111 = 625^111
4^555 = 4^5.111 = (4^5)^111 = 1024^111
Vì 1024>625 => 444^555 > 555^444
k nhé
Bài giải
a, \(3^{450}=\left(3^3\right)^{150}=9^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
\(\text{Vì }9^{150}< 25^{150}\) \(\Rightarrow\text{ }3^{450}< 5^{300}\)
b, \(333^{444}=\left(333^4\right)^{111}=12296370321^{111}\)
\(444^{333}=\left(444^3\right)^{111}=87528384^{111}\)
Vì \(12296370321^{111}>87528384^{111}\) \(\Rightarrow\text{ }333^{444}>444^{333}\)
Bài giải
a, \(3^{450}=\left(3^3\right)^{150}=9^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
\(\text{Vì }9^{150}< 25^{150}\) \(\Rightarrow\text{ }3^{450}< 5^{300}\)
b, \(333^{444}=\left(333^4\right)^{111}=12296370321^{111}\)
\(444^{333}=\left(444^3\right)^{111}=87528384^{111}\)
Vì \(12296370321^{111}>87528384^{111}\) \(\Rightarrow\text{ }333^{444}>444^{333}\)
444^5= (111^4)^5=11^20
555^4= (111^5)^4=111^20
=) 444^5=555^4
\(444^5=\left(444^{\frac{5}{4}}\right)^4\approx2038^4\)
vì:\(2038^4>555^4\Rightarrow444^5>555^4\)