Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^1+3^2+3^3+3^4+3^5+...+\)\(3^{2012}\)
\(=(3^1+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+\)\((\)\(3^{2009}\)\(+\)\(3^{2010}\)\(+\)\(3^{2011}\)\(+\)\(3^{2012}\)\()\)
\(=1(3^1+3^2+3^3+3^4)+4(3^1+3^2+3^3+3^4)+...+2008(3^1+3^2+3^3+3^4)\)
\(=(1+4+...+2008). (3^1+3^2+3^3+3^4)\)
\(=Q.120\)
\(\Rightarrow\) Tổng \(3^1+3^2+3^3+3^4+3^5+...+\)\(3^{2012}\) \(⋮\) \(120\)
31 + 32 + 33+ 34 + 35 + … + 32012
= (31 + 32 + 33+ 34) + (35 + 36 + 37 + 38) + ... + (32009 + 32010 + 32011 + 32012)
= 1(31 + 32 + 33+ 34) + 34(31 + 32 + 33+ 34) + ... + 32008(31 + 32 + 33+ 34)
= (1 . 120) + (34 . 120) + ... + (32008 . 120)
= (1 + 34 + ... + 32008) . 120
= 120 ⋮ 120
⇒ Tổng 31 + 32 + 33+ 34 + 35 + … + 32012 chia hết cho 120
Ta xét :
\(444^{555}=\left(444^5\right)^{111}=\left(111^5.4^5\right)^{111}=\left(111^5.1024\right)^{111}\)
\(555^{444}=\left(555^4\right)^{111}=\left(111^4.5^4\right)^{111}=\left(111^4.625\right)^{111}\)
Mà \(111^5.1024>111^4.625\)
\(\Rightarrow444^{555}>555^{444}\)
ta có: \(444^{555}=444^{\left(111\times5\right)}=\left(444^5\right)^{111}\)
\(555^{444}=555^{\left(111\times4\right)}=\left(555^4\right)^{111}\)
ta có: \(444^5=\left(4\times111\right)^5=4^5\times111^5\)= \(1024\times111\times111^4\)
\(555^4=\left(5\times111\right)^4=5^4\times111^4\) = \(625\times111^4\)
ta có: \(1024\times111\times111^4\) > \(625\times111^4\)
\(\Rightarrow\)\(444^5>555^4\)
mình làm hơi tắt bạn tự hoàn thiện nha.
444^555 = (444^5)^111 = (111^5.4^5)^111.
555^444 = (555^4)^111 = (111^4.5^4)^111.
Do 111^5 > 111^4 va 4^5 > 5^4 nen 111^5.4^5 > 111^4.5^4
a, Ta có:
6256=(54)6=54.6=524
1259=(53)9=53.9=527
Vì 24<27 nên 524<527
=>6256<1259
b, Ta có:
544=(33.2)4=312.24
2112=(3.7)12=312.712
Vì 24<712 nên 544<2112
\(=5^{2001}\left(1+5+5^2\right)\)
\(=5^{2001}.31\)
=> 52003+52002+52001 chia hết cho 31
Ta co :
3200 va 2300
3200=(32)100=9100
2300=(23)100=8100
Ma : 9100>8100
Vay suy ra 3200>2300
tu lm tiep nhe
so sanh : 555444 < 444555
555^444 = (5.111)^444 = 5^444.111^444
444^555 = (4.111)^555 = 4^555.111^555
5^444 = 5^4.111 = (5^4)^111 = 625^111
4^555 = 4^5.111 = (4^5)^111 = 1024^111
Vì 1024>625 => 444^555 > 555^444
k nhé