Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co :
3200 va 2300
3200=(32)100=9100
2300=(23)100=8100
Ma : 9100>8100
Vay suy ra 3200>2300
tu lm tiep nhe
444^5= (111^4)^5=11^20
555^4= (111^5)^4=111^20
=) 444^5=555^4
\(444^5=\left(444^{\frac{5}{4}}\right)^4\approx2038^4\)
vì:\(2038^4>555^4\Rightarrow444^5>555^4\)
444^555 = (444^5)^111 = (111^5.4^5)^111.
555^444 = (555^4)^111 = (111^4.5^4)^111.
Do 111^5 > 111^4 va 4^5 > 5^4 nen 111^5.4^5 > 111^4.5^4
555^444 = (5.111)^444 = 5^444.111^444
444^555 = (4.111)^555 = 4^555.111^555
5^444 = 5^4.111 = (5^4)^111 = 625^111
4^555 = 4^5.111 = (4^5)^111 = 1024^111
Vì 1024>625 => 444^555 > 555^444
k nhé
ta có :
\(333^{444}=333^{4.111}=\left(333^4\right)^{111}\)
\(444^{333}=444^{3.111}=\left(444^3\right)^{111}\)
Vì hai số đó có cùng số mũ nên ta so sánh \(333^4\text{và}444^3\)
\(333^4=\left(3.111\right)^4=3^4.111^4=81.111^4\)
\(444^3=\left(4.111\right)^3=4^3.111^3=64.111^3\)
Vì \(81.111^4>64.111^3\)nên \(333^{444}>444^{333}\)
Ta có: \(333^{555}=\left(3.111\right)^{555}=3^{555}.111^{555}=\left(3^5\right)^{111}.111^5=243^{111}.111^5\)
\(555^{333}=\left(5.111\right)^{333}=5^{333}.111^{333}=\left(5^3\right)^{111}.111^{555}=125^{111}.111^{555}\)
Vì \(243^{111}.111^{555}>125^{111}.111^3\) nên \(333^{555}>555^{333}\)
Ta xét :
\(444^{555}=\left(444^5\right)^{111}=\left(111^5.4^5\right)^{111}=\left(111^5.1024\right)^{111}\)
\(555^{444}=\left(555^4\right)^{111}=\left(111^4.5^4\right)^{111}=\left(111^4.625\right)^{111}\)
Mà \(111^5.1024>111^4.625\)
\(\Rightarrow444^{555}>555^{444}\)
ta có: \(444^{555}=444^{\left(111\times5\right)}=\left(444^5\right)^{111}\)
\(555^{444}=555^{\left(111\times4\right)}=\left(555^4\right)^{111}\)
ta có: \(444^5=\left(4\times111\right)^5=4^5\times111^5\)= \(1024\times111\times111^4\)
\(555^4=\left(5\times111\right)^4=5^4\times111^4\) = \(625\times111^4\)
ta có: \(1024\times111\times111^4\) > \(625\times111^4\)
\(\Rightarrow\)\(444^5>555^4\)
mình làm hơi tắt bạn tự hoàn thiện nha.