Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh cần tìm là x (bạn, x thuộc N*)
Vì a chia cho 12;15;18 đều dư 9
nên a-9 chia hết cho 12;15;18
do đó a-9 thuôc̣ BC(12,15,18)
Ta có ; 12=2^2 . 3 ;15=3.5 ; 18=2.3^2
suy ra BCNN(12,15,18)=2^2 . 3^2 . 5=180
suy ra BC(12,15,18)=B(180)={0;180;360;540;...}
mà số học sinh 300 < a < 400 nên a-9=360
do đó a = 360 + 9 = 369 (bạn)
Vậy số học sinh là 369 học sinh
Gọi số học sinh là \(a\) (bạn)
Vì a chia cho 12; 15; 18 đều dư 9 nên\(a-9\)chia hết cho 12; 15; 18 \(\Rightarrow\)\(a-9\)thuộc BC(12,15,18)
Ta có:
12 = 22 . 3
15 = 3. 5
18 = 2 . 32
\(\Rightarrow\)BCNN(12, 15, 18) = 22 . 32 . 5 = 180
\(\Rightarrow\)BC(12, 15, 18) = B(180) = {0, 180, 360, 540,...}
Ma số học sinh 300 < a < 400 nên \(a-9\)= 360
Vậy a = 360 học sinh
# cho mình nhé!
gọi số học sinh là a (bạn)
vì a chia cho 12;15;18 đều dư 9 nên a-9 chia hết cho 12;15;18 suy ra a-9 thuộc BC(12,15,18)
Ta có ; 12=2^2 . 3 ;15=3.5 ; 18=2.3^2
suy ra BCNN(12,15,18)=2^2 . 3^2 . 5=180
suy ra BC(12,15,18)=B(180)={0;180;360;540;...}
mà số học sinh 300<a<400 nên a-9=360
vậy a=360+9=369 (bạn)
+ Gọi x là số học sinh cần tìm .
+ Theo bài ra :
- x - 9 \(\in\)BC ( 12 ; 15 ; 18 ) ( 1 )
- x \(\in\)N ; 300 < x < 400 ( 2 )
+ Ta có :
12 = 22 . 3
15 = 3 . 5
18 = 2 . 32
BCNN ( 12 ; 15 ; 18 ) = 22 . 32 . 5 = 180
BC ( 12 ; 15 ; 18 ) = B ( 180 ) =
= { 0 ; 180 ; 360 ; 540 ; ... ) ( 3 )
( 1 ) , ( 3 ) => x - 9 \(\in\){ 0 ; 180 ; 360 ; 540 ; ... }
=> x \(\in\){ 9 ; 189 ; 369 ; 549 ; ... } ( 4 )
( 2 ) , ( 4 ) => x = 369 .
+ Vậy số học sinh khối 6 trường đó là 369 học sinh .
Gọi số học sinh khối 6 cần tìm ít nhất của trường đó là x(x ϵ N), theo đề bài, ta có:
x - 9 ⋮ 12
x - 9 ⋮ 15
x - 9 ⋮ 18
x nhỏ nhất
⇒ x - 9 = BCNN(12,15,18)
⇒ Ta có:
12 = 22.3
15 = 3.5
18 = 2.32
⇒ BCNN(12,15,18) = 22.32.5 = 180
⇒ B(180) = {0;180;360;540;....}
⇒ x - 9 ϵ {0;180;360;540.....}
⇒ x - 9 ϵ {9;189;369;549;....}
Mà 300 < x < 400 ⇒ Vậy x = 369
⇒ Số học sinh khối 6 cần tìm ít nhất có thể là 369 học sinh.
Gọi x (học sinh) là số học sinh cần tìm (x ∈ ℕ* và 300 < x < 400)
Do khi xếp hàng 12; 15; 18 đều dư 9 học sinh nên x - 9 ∈ BC(12; 15; 18)
Ta có:
12 = 2².3
15 = 3.5
18 = 2.3²
⇒ BCNN(12; 15; 18) = 2².3².5 = 180
⇒ x - 9 ∈ BC(12; 15; 18) = B(180) = {0; 180; 360; 540; ...}
⇒ x ∈ {9; 189; 369; 549; ...}
Mà 300 < x < 400
⇒ x = 369
Vậy số học sinh cần tìm là 369 học sinh
Gọi số học sinh khối 6 của trường là x.
Theo đề bài, khi xếp thành 12 hàng, 15 hàng, hoặc 18 hàng, số học sinh đều dư 9 em. Điều này có thể biểu diễn bằng các phương trình sau:
x ≡ 9 (=> 12)
x ≡ 9 (=> 15)
x ≡ 9 (=>18)
Để giải hệ phương trình tuyến tính này, chúng ta có thể sử dụng định lý Trung Hoa. Đầu tiên, chúng ta tìm các giá trị cơ sở cho mỗi phương trình:
12 - 9 = 3
15 - 9 = 6
18 - 9 = 9
Tiếp theo, chúng ta tính tích của các giá trị cơ sở:
=> 12 × 15 × 18 = 3240
Sau đó, chúng ta tính các hệ số:
1 ×12 = 270
2× 15 = 216
3 ×18 = 180
Cuối cùng, chúng ta tính số học sinh khối 6 bằng cách sử dụng công thức:
x = (9 × 270 × 3 + 9 × 216 × 6 + 9 × 180 × 9) ÷ 3240
x = 17496 ÷ 3240
x = 336
Vậy, số học sinh khối 6 của trường là 336.
Gọi số học sinh khối 6 của trường đó là a
Vì a : 12, 15, 18 đều dư 9 => a - 9 \(⋮\)12, 15, 18 => a - 9 \(\in\)BC(12, 15, 18)
12 = 22 . 3
15 = 3 . 5
18 = 2 . 32
BCNN(12, 15, 18) = 22 . 32 . 5 = 4 . 9 . 5 = 180
a - 9 \(\in\)BC(12, 15, 18) = B(180) = {0;180;360;540;...}
=> a \(\in\){9;189;369;549;...}
Vì 300 < a < 400 => a = 369
Vậy số học sinh khối 6 của trường đó là 369 học sinh
Số hs khối 6 của trường là 369 hs