Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(a+2b-3c-d)(a+2b+3c+d)=[(a+2b)-(3c+d)][(a+2b)+(3c-d)]
=(a+2b)2-(3c-d)2=a2+4ab+4b2-9c2+6cd-d2
câu b tương tự
a) (x - 1)(x + 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x2 - 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x4 - 1)(x4 + 1)(x8 + 1)
= (x8 - 1)(x8 + 1)
= x16 - 1
b) (a2 - 2b)(a2 + 2b)(a4 + 4b2)(a8 + 16b4)
= (a4 - 4b2)(a4 + 4b2)(a8 + 16b4)
= (a8 - 16b4)(a8 + 16b4)
= a16 - 256b8
a, ( a+ b + a - b)(a + b - a + b )
= 2a . 2b
= 4ab
c, = (x + y + z - x - y )2 = z2
Bài 1:
a) \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b+\left(a-b\right)\right).\left(a+b-\left(a-b\right)\right)\)
\(=2a.2b\)
\(=4ab\)
Câu 1:
a) (a +b )2 - ( a -b )2
=a2+b2-a2+b2
=2b2
b) (a + b )3- ( a - b )3 - 2b3
=a3+b3-a+b3-2b3
=a3-a
c) ( x+y+z)2 - 2(x+y+z)(x+y) + (x + y )2
=x2+xy+xz+xy+y2+yz+xz+yz+z2-2.(x2+xy+xz+xy+y2+yz)+x2+xy+xy+y2
=x2+y2+z2+2xy+2xz+2yz-2x2-2y2-4xy-2xz-2yz+x2+2xy+y2
=0
a) (a + b)2 – (a – b)2
= (a2 + 2ab + b2) – (a2 – 2ab + b2)
= a2 + 2ab + b2 – a2 + 2ab - b2
= 4ab
b) (a + b)3 – (a – b)3 – 2b3
= (a3 + 3a2b + 3ab2 + b3) – (a3 – 3a2b + 3ab2 – b3) – 2b3
= a3 + 3a2b + 3ab2 + b3 – a3 + 3a2b - 3ab2 + b3 – 2b3
= 6a2b
c) (x + y + z)2 – 2(x + y + z)(x + y) + (x + y)2
= x2 + y2 + z2+ 2xy + 2yz + 2xz – 2(x2 + xy + yx + y2 + zx + zy) + x2 + 2xy + y2
= 2x2 + 2y2 + z2 + 4xy + 2yz + 2xz – 2x2 – 4xy – 2y2 – 2xz – 2yz
= z2
a)
\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\\ =2a.2b=4ab\)
b)
\(\left(a+b\right)^3-\left(a-b\right)^3-2b^3\\ =\left(a+b-a+b\right)\left[\left(a+b\right)^2+a^2-b^2+\left(a-b\right)^2\right]-2b^3\\ =2b\left(3a^2+b^2-b^2\right)=2b.3a^2=6a^2b\)
c)
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\\ =\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\\ =\left(x+y+z-x-y\right)^2=z^2\)
A = x(x - 3)(x + 3) - (x + 1)3
=> A = x(x2 - 9) - x3 - 3x2 - 3x - 1
=> A = x3 - 9x - x3 - 3x2 - 3x - 1
=> A = -3x2 - 12x - 1
B = (a - 2b)2 - (a + 2b)2
=> B = (a - 2b + a + 2b)(a - 2b - a - 2b)
=> B = 2a(-2a - 4b)
=> B = -4a2 - 8ab