Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2+3x+1=t\)
\(\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)
\(=t\left(t-4\right)-5\)
\(=t^2-4t-5\)
tự làm nốt ý này nhé.
những ý kia lát nx mình làm.
Bài 209 : đăng tách ra cho mn cùng làm nhé
a,sửa đề : \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)
b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)
\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)
c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)
\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)
a) \(\left(m+n\right)^2-\left(m-n\right)^2+\left(m+n\right)\left(m-n\right)\)
\(=\left(m+n+m-n\right)\left(m+n-m+n\right)+m^2-n^2\)
\(=m^2-n^2+4mn\)
b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)
\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]-2a^3\)
\(=2b\left[a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right]-2a^3\)
\(=2b\left(a^2+3b^2\right)-2a^3\)
\(=2a^2b+6b^3-2a^3.\)
Tương tự áp dụng các HĐT.
a) \(\left(m+n\right)^2-\left(m-n\right)^2=\left[\left(m+n\right)-\left(m-n\right)\right]\left[\left(m+n\right)+\left(m-n\right)\right]=\left(2n\right)\left(2m\right)=4mn\)\(\left(m+n\right)\left(m-n\right)=m^2-n^2\)
A=\(4mn+m^2-n^2\) tối giản rồi
b)
\(\left(a+b\right)^3+\left(a-b\right)^3=\left[\left(a+b\right)+\left(a-b\right)\right]^3-3\left(a+b\right)\left(a-b\right)\left[\left(a+b\right)+\left(a-b\right)\right]=8a^3-3.2a.\left(a^2-b^2\right)\)B=\(8a^3-3.2a.\left(a^2-b^2\right)-2a^3=6a\left[a^2-\left(a^2-b^2\right)\right]=6ab^2\)
\(\left(x+1\right)\left(x^2-x-x^2+x-1\right)=-\left(x+1\right)\)
\(\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2=-4a^2\)
\(\left(a^2+b^2+c^2+a^2-b^2-c^2\right)\left(a^2+b^2+c^2-a^2+b^2+c^2\right)=2a^2\left(2b^2+2c^2\right)=4a^2b^2+4a^2c^2\)
\(\left(a-5\right)^2\left(a+5\right)^2=\left(a^2-25\right)^2\)
\(\left(3a^3+1\right)^2-9a^2-\left(3a^3+1\right)^2=-9a^2\)