Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 209 : đăng tách ra cho mn cùng làm nhé
a,sửa đề : \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)
b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)
\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)
c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)
\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)
Ta có: a + b + c = 0
<=> a2 + b2 + c2 + 2(ab + bc + ac) = 0
<=> a2 + b2 + c2 = -2(ab + bc + ac)
<=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2 = 4[a2b2 + b2c2 + a2c2 + 2abc(a + b + c)] (vì a + b + c= 0)
<=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 4(a2b2 + b2c2 + a2c2)
<=> a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2) (đpcm)
b) Từ a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)
<=> (a4 + b4 + c4)/2 = a2b2 + b2c2 + a2c2 + 2abc(a + b + c) (vì a + b + c) = 0
<=> (a4 + b4 + c4)/2 = (ab + bc + ac)2
<=> a4 + b4 + c4 = 2(ab + bc + ac)2 (đpcm)
c) Từ a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)
<=> 2(a4 + b4 + c4) = a4+ b4 + c4 + 2(a2b2 + b2c2 + a2c2)
<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
<=> a4 + b4 + c4 = (a2 + b2 + c2)2/2 (đpcm)
\(\left(x+1\right)\left(x^2-x-x^2+x-1\right)=-\left(x+1\right)\)
\(\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2=-4a^2\)
\(\left(a^2+b^2+c^2+a^2-b^2-c^2\right)\left(a^2+b^2+c^2-a^2+b^2+c^2\right)=2a^2\left(2b^2+2c^2\right)=4a^2b^2+4a^2c^2\)
\(\left(a-5\right)^2\left(a+5\right)^2=\left(a^2-25\right)^2\)
\(\left(3a^3+1\right)^2-9a^2-\left(3a^3+1\right)^2=-9a^2\)
g) \(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)
f) \(x^2-25-2xy+y^2=\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
e) \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
d) \(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
Bài1: Phân tích các đa thức sau thành nhân tử
a)36-4x2+4xy-y2
\(=6^2-\left(4x^2-4xy+y^2\right)\)
\(=6^2-\left(2x-y\right)^2\)
\(=\left(6+2x-y\right)\left(6-2x+y\right)\)
b)2x4+3x2-5
\(=2x^4-2x^2+5x^2-5\)
\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x-1\right)\left(x+1\right)\)
B1:a)\(36-4x^2+4xy-y^2=36-\left(4x^2-4xy+y^2\right)=6^2-\left(2x-y\right)^2\)
\(=\left(6-2x+y\right)\left(6+2x-y\right)\)
c)\(a^3-ab^2+a^2+b^2-2ab=a\left(a^2-b^2\right)+\left(a-b\right)^2\)\(=a\left(a-b\right)\left(a+b\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+a-b\right)\)
d)\(x^2-\left(a^2+b^2\right)x+a^2b^2=x^2-a^2x-b^2x+a^2b^2\)\(=x\left(x-a^2\right)-b^2\left(x-a^2\right)=\left(x-a^2\right)\left(x-b^2\right)\)
e)\(x\left(x-y\right)+x^2-y^2=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)\(=\left(x-y\right)\left(x+x+y\right)=\left(x-y\right)\left(2x+y\right)\)