Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2
=> B x 2 = 2101 - 2100 + 299 - 298 + ...23 - 22
=> B x 2 + B = (2101 - 2100 + 299 - 298 + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)
<=> B x 3 = 2101 - 2 = 2. ( 299 - 1)
=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)
Phần c) Làm tương tự Lấy C x 3 rồi + với C.
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)
\(2A+A=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) tương tự
\(B=\frac{3^{101}+1}{4}\)
C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99
=> C = 1/3^99 = 1/(3^99)
=> C < 1/2 (đpcm)
2A=2^101-2^100+2^98+...+2^3-2^2
3A = 2A + A
3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )
A = (2^101-2) :3
B tăng tự
A = 2100 - 299 + 298 - 297 + ... + 22 - 2
= ( 2100 + 298 + ... + 22 ) - ( 299 + 297 + ... + 2 )
= ( 2100 + 298 + ... + 22 ) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )
= 299 + 297 + ... + 2
=> 4A = 2103 + 299 + ... + 23
=> 3A = 2103 - 2
=> A = \(\frac{2^{103}-2}{3}\)
A=2^ 100 -2^ 99+2 ^98 -2 ^97+.....+2 ^2 -2
=>2A=2^ 101 -2 ^100+2^ 99 -2 ^98+.....+2^ 3 -2^ 2
=>2A+A=2 ^101 -2 ^100+2^ 99 -2^ 98+.....+2^ 3 -2 ^2+2^ 100 -2^ 99+2 ^98 -2^ 97+....+2 ^2 -2
=>3A=2^ 201 -2
=>A=\(\frac{2^{201}-2}{3}\)
B=3^ 100 -3^ 99+3^ 98 -3^ 97+....+3 ^2 -3+1
=>3B=3^ 101 -3 ^100+3 ^99 -3^ 98+...+3 ^3 -3^ 2+3
=>3B+B=3^ 101 -3^100+3^ 99 -3 ^98+...+3 ^3 -3 ^2+3+3 ^100 -3^ 99+3^ 98 -3^ 97+....+3 ^2 -3+1
=>4B=3 ^101+1
=>B=\(\frac{3^{101}+1}{4}\)
A = 3^100 - 3^99 + 3^98 - 3^97 +...........+ 3^2 - 3 + 1
3A = 3^101 - 3^100 + 3^99 - 3^98 +...+3^3 -3^2 +3
=> 4A = 3A + A = 3^101 + 1
A = 3101 + 1
4
Ta có:
\(\left(-3\right)^n=3^n\) nếu n chẵn
\(\left(-3\right)^n=-3^n\) nếu n lẻ
B = C - D trong đó
\(C=1+3^2+3^4+...+3^{100}\)
\(D=3+3^3+3^5+...+3^{99}\)
+ \(3C=3+3^3+3^5+...+3^{101}\)
\(2C=3C-C=3^{101}-1\Rightarrow C=\frac{3^{101}-1}{2}\)
+ \(3D=3^2+3^4+3^6+...+3^{100}\)
\(2D=3D-D=3^{100}-3\Rightarrow D=\frac{3^{100}-3}{2}\)
=> \(B=C-D=\frac{\left(3^{101}-1\right)-\left(3^{100}-3\right)}{2}=\frac{\left(3^{101}-3^{100}\right)+2}{2}=\frac{3^{100}\left(3-1\right)+2}{2}=\frac{2\left(3^{100}+1\right)}{2}=3^{100}+1\)