Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - { -(2016 +2015) - [ - (2016 - 2015) - (2016+2015) ] }
= -{-(2016+2015)-[-0-0]}
= -{-4031-0-0}
=-4031
\(A=\dfrac{10^{2016}-1+3}{10^{2016}-1}=1+\dfrac{3}{10^{2016}-1}\)
\(B=\dfrac{10^{2016}-3+3}{10^{2016}-3}=1+\dfrac{3}{10^{2016}-3}\)
mà \(10^{2016}-1>10^{2016}-3\)
nên A<B
Ta có:A=\(\frac{2016^{2016}+2}{2016^{2016}-1}\)>1
=>A<\(\frac{2016^{2016}+2-2}{2016^{2016}-1-2}\)=\(\frac{2016^{2016}}{2016^{2016}-3}\)=B
=>A<B(công thức nếu \(\frac{a}{b}\)>1 thì \(\frac{a}{b}\)<\(\frac{a-n}{b-n}\)(nEN)
CM công thức:
Ta có \(\frac{a}{b}\)>1=>a>b=>a=b+n(nEN)
Ta so sánh \(\frac{a}{b}\) và \(\frac{a-n}{b-n}\)(nEN)
Mà a*(b-n)=ab-an=ab-(b+n)*n=ab-(bn+n2)=ab-bn-n2
b*(a-n)=ba-bn
Vì ab-bn-n2<ba-bn
=>\(\frac{a}{b}\)<\(\frac{a-n}{b-n}\)