Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Do \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
Chúc bạn học tốt !!!
\(A=\frac{2016^{2016}-1+3}{2016^{2016}-1};B=\frac{2016^{2016}-3+3}{2016^{2016}-3}\)
\(A=\frac{2016^{2016}-1}{2016^{2016}-1}+\frac{3}{2016^{2016}-1};B=\frac{2016^{2016}-3}{2016^{2016}-3}+\frac{3}{2016^{2016}-3}\)
\(A=1+\frac{3}{2016^{2016}-1};B=1+\frac{3}{2016^{2016}-3}\)
Vì \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A< B\)
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Do \(\frac{3}{2016^{2016}-1}>\frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}>1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
Chúc bạn học tốt !!!
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=\frac{2016^{2016}-1}{2016^{2016}-1}+\frac{3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=\frac{2016^{2016}-3}{2016^{2016}-3}+\frac{3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Vì \(1=1;\frac{3}{2016^{2016}-1}<\frac{3}{2016^{2016}-3}\)nên \(1+\frac{3}{2016^{2016}-1}<1+\frac{3}{2016^{2016}-3}\)
\(=>\)\(A\)\(<\)\(B\)
A= (2016^2016+2)/(2016^2016-1)=(2016^2016-1+3)/(2016^2016-1)=(2016^2016-1)/2016^2016-1)+(3/2016^2016-1)=1+(3/2016^2016-1) B=( 2016^2016)/(2016^2016-3)=(2016^2016-3+3)/(2016^2016-3)=(2016^2016-3)/(2016^2016-3) +(3/2016^2016-3)=1+(3/2016^2016-3) Vì 3/(2016^2016-1)<3/(2016^2016-3) Nên A<B
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=\frac{2016^{2016}-1}{2016^{2016}-1}+\frac{3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=\frac{2016^{2016}-3}{2016^{2016}-3}+\frac{3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
ta thấy:20162016-1>20162016-3
=>\(\frac{3}{2016^{2016}-1}<\frac{3}{2016^{2016}-3}\)
=>\(1+\frac{3}{2016^{2016}-1}<1+\frac{3}{2016^{2016}-3}\)
=>A<B
A = 20162016 + 2/20162016-1 = 20162016 - 1 + 3/20162016 - 1
= 20162016 - 1/20162016 - 1 + 3/20162016 - 1
= 1 + 3/20162016 - 1 (không biết ghi hỗn số)
B = 20162016/20162016 -3 = 20162016 - 3 + 3/20162016 - 3
= 20162016 - 3/20162016 - 3 + 3/20162016 - 3
= 1 + 3/20162016 - 3
So sánh : 1 + 3/20162016 - 1 và 1 + 3/20162016 - 3
Ta có : 1 + 3/20162016 - 1 < 1 + 3/20162016 - 3
=> A < B
Ta có :
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{\left(2016^{2016}-1\right)+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Vì \(2016^{2016}-1>2016^{2016}-3\) nên \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A< B\)
\(A=\frac{2016^{2016}+2}{2016^{2016}-1};;B=\frac{2016^{2016}}{2016^{2016}-3}\)\(A=\frac{\left(2016^{2016}-1\right)+2+1}{2016^{2016}-1};;B=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}\)\(A=1+\frac{3}{2016^{2016}-1};;B=1+\frac{3}{2016^{2016}-3}\);;Vì \(2016^{2016}-1>2016^{2016}-3\)Nên\(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)Vậy \(A< B\)
Ta có:A=\(\frac{2016^{2016}+2}{2016^{2016}-1}\)>1
=>A<\(\frac{2016^{2016}+2-2}{2016^{2016}-1-2}\)=\(\frac{2016^{2016}}{2016^{2016}-3}\)=B
=>A<B(công thức nếu \(\frac{a}{b}\)>1 thì \(\frac{a}{b}\)<\(\frac{a-n}{b-n}\)(nEN)
CM công thức:
Ta có \(\frac{a}{b}\)>1=>a>b=>a=b+n(nEN)
Ta so sánh \(\frac{a}{b}\) và \(\frac{a-n}{b-n}\)(nEN)
Mà a*(b-n)=ab-an=ab-(b+n)*n=ab-(bn+n2)=ab-bn-n2
b*(a-n)=ba-bn
Vì ab-bn-n2<ba-bn
=>\(\frac{a}{b}\)<\(\frac{a-n}{b-n}\)