Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(2016^{2017}>2016^{2017}-3\)
\(\Rightarrow B>\frac{2016^{2017}}{2016^{2017}-3}>\frac{2016^{2017}+2}{2016^{2017}-3+2}=\frac{2016^{2017}+2}{2016^{2017}-1}=A\)
vậy \(A< B\)
\(A=\frac{10^{2015}+1}{10^{2016}+1}\Rightarrow10A=\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}=\frac{10^{2016}+10}{10^{2016}+1}\)
\(A=\frac{10^{2016}+1+9}{10^{2016}+1}=\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)
\(B=\frac{10^{2016}+1}{10^{2017}+1}\Rightarrow10B=\frac{10.\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+10}{10^{2017}+1}\)
\(B=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)
Vì 102016+1 < 102017+1
=>\(\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\)
=>\(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)
=>10A > 10B
=>A > B
\(B=\frac{10^{2016}+1}{10^{2017}+1}<\frac{10^{2016}+1+9}{10^{2017}+1+9}\)
\(=\frac{10^{2016}+10}{10^{2017}+10}\)
\(=\frac{10.\left(10^{2015}+1\right)}{10.\left(10^{2016}+1\right)}\)
\(=\frac{10^{2015}+1}{10^{2016}+1}=A\)
\(\Rightarrow\) B<A
1-<49/9+x-133/18>:63/4=0 giúp mik nhanh lên nha các bn .cảm ơn