K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2023

\(=\sqrt{\left(2-\sqrt{3}\right)^2\left(26+15\sqrt{3}\right)}-\sqrt{\left(2+\sqrt{3}\right)^2\left(26-15\sqrt{3}\right)}=\)

\(=\sqrt{\left(7-4\sqrt{3}\right)\left(26+15\sqrt{3}\right)}-\sqrt{\left(7+4\sqrt{3}\right)\left(26-15\sqrt{3}\right)=}\)

\(=\sqrt{7.26+7.15\sqrt{3}-4.26\sqrt{3}-180}-\sqrt{7.26-7.15\sqrt{3}+4.26\sqrt{3}-180}=\)

\(=\sqrt{4+\sqrt{3}}-\sqrt{4-\sqrt{3}}\)

11 tháng 10 2017

Xét: \(A=\sqrt{26+15\sqrt{3}}\)  dễ thấy A > 0

\(\Leftrightarrow A^2=52-2\sqrt{26^2-15^2.3}=50\Leftrightarrow A=\sqrt{50}\)

Vậy: \(A=2+\sqrt{3}.\sqrt{26+15\sqrt{3}}-2\sqrt{3}.\sqrt{26-15\sqrt{3}}\)

\(=2+\sqrt{3}.A=2+\sqrt{3}.\sqrt{50}=5\sqrt{6}+10\sqrt{2}\)

27 tháng 10 2019

1. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath

11 tháng 8 2017

cau a,b,c thay no co chung 1 dang do la

\(\sqrt[3]{a+m}+\sqrt[3]{a-m}\)

dang nay co 2 cach

C1: nhanh kho nhin de sai

VD: cau B

\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(B\right)\)

B^3=40+3(2)(B)

B^3=40+6B

B=4

C2: hoi dai nhung de nhin

dat \(a=\sqrt[3]{20+14\sqrt{2}};b=\sqrt[3]{20-14\sqrt{2}}\)

de thay B=a+b

            ab=2

            a^3+b^3=40

suy ra B^3=a^3+b^3+3ab(a+b)

B^3=40+6B

B=4

giai tuong tu

con co cach nay nhung it su dung vi kho tim

C3: dua ve tong lap phuong

VD:cau B

 \(20+14\sqrt{2}=\left(2+\sqrt{2}\right)^3\)

\(20-14\sqrt{2}=\left(2-\sqrt{2}\right)^3\)

de thay

B=4

cau d)

dung CT nay

\(\sqrt[m]{a}=\sqrt[m\cdot n]{\left(a\right)^n}\)

ap dung vao bai

\(\sqrt[3]{2\sqrt{3}-4\sqrt{2}}=\sqrt[6]{\left(2\sqrt{3}-4\sqrt{2}\right)^2}=\sqrt[6]{44-16\sqrt{6}}\)

nhanh vao

\(\sqrt[6]{\left(44-16\sqrt{6}\right)\left(44+16\sqrt{6}\right)}=\sqrt[6]{400}=\sqrt[3]{20}\)

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

9 tháng 8 2017

Sửa đề

\(A=\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{26-15\sqrt{3}}\)

\(=\left(2-\sqrt{3}\right)\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{8-12\sqrt{3}+18-3\sqrt{3}}\)

\(=\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\left(2+\sqrt{3}\right)\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)

\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=0\)

25 tháng 8 2019

Nhân thêm căn hai vào C. phá căn ra tính bt

Ta có: \(\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)

\(=\frac{\left(2-\sqrt{3}\right)\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\left(2-\sqrt{3}\right)\cdot\sqrt{27+2\cdot3\sqrt{3}\cdot5+25}-\left(2+\sqrt{3}\right)\sqrt{27-2\cdot3\sqrt{3}\cdot5+25}}{\sqrt{2}}\)

\(=\frac{\left(2-\sqrt{3}\right)\sqrt{\left(3\sqrt{3}+5\right)^2}-\left(2+\sqrt{3}\right)\cdot\sqrt{\left(3\sqrt{3}-5\right)^2}}{\sqrt{2}}\)

\(=\frac{\left(2-\sqrt{3}\right)\left|3\sqrt{3}+5\right|-\left(2+\sqrt{3}\right)\left|3\sqrt{3}-5\right|}{\sqrt{2}}\)

\(=\frac{\left(2-\sqrt{3}\right)\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)(Vì \(3\sqrt{3}>5>0\))

\(=\frac{6\sqrt{3}+10-9-5\sqrt{3}-\left(6\sqrt{3}-10+9-5\sqrt{3}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{3}+1-\left(\sqrt{3}-1\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}\)

\(=\frac{2}{\sqrt{2}}=\sqrt{2}\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

a)

\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)

\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)

b)

\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)

\(\Rightarrow B=0\)

c)

\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)

\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

d)

\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)

\(=\sqrt{2}.1^2=\sqrt{2}\)

e)

\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)

\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)

f)

\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)

23 tháng 6 2019

Đặt bt là A

\(A\sqrt{2}=\left(2-\sqrt{3}\right)\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{52-30\sqrt{3}}\)

\(=\left(2-\sqrt{3}\right)\sqrt{\left(3\sqrt{3}+5\right)^2}-\left(2+\sqrt{3}\right)\sqrt{\left(3\sqrt{3}-5\right)^2}\)\(=\left(2-\sqrt{3}\right)\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)\)

khai triển hết ra ta đc \(A\sqrt{2}=2\Rightarrow A=\sqrt{2}\)