Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sqrt[3]{26+15\sqrt{3}}=\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}\)
\(=\sqrt[3]{2^3+3.2^2\sqrt{3}+3.2.\left(\sqrt{3}\right)^2+\left(\sqrt{3}\right)^3}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}\)
\(=2+\sqrt{3}\)
Đặt \(x=\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)
Ta có \(x^3=\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)^3\)
\(=9+\sqrt{80}+9-\sqrt{80}+3.\left(\sqrt[3]{9+\sqrt{80}}\right)^2\left(\sqrt[3]{9-\sqrt{80}}\right)+3.\left(\sqrt[3]{9-\sqrt{80}}\right)^2\left(\sqrt[3]{9+\sqrt{80}}\right)\)
\(=18+3\sqrt[3]{9+\sqrt{80}}.\sqrt[3]{9-\sqrt{80}}\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)\)
\(=18+3\sqrt[3]{9^2-80}.x\)
\(=18+3x\)
Vậy \(x^3=18+3x\)
\(\Leftrightarrow x^3-3x-18=0\)
Vậy x = 3
Do đó \(M=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+3=2^2-3+3=4\)
Vậy M = 4.
Đặt A = \(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)=> \(A^3=18+3A\Leftrightarrow A^3-3A-18=0\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\Leftrightarrow A-3=0\Leftrightarrow A=3\)
\(\dfrac{\sqrt[3]{26+15\sqrt{3}}\left(2-\sqrt{3}\right)}{\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}}=\dfrac{\sqrt[3]{\left(2+\sqrt{3}\right)^3}\left(2-\sqrt{3}\right)}{3}=\dfrac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{3}=\dfrac{1}{3}\)
a: \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot A\cdot\sqrt[3]{4-5}\)
\(\Leftrightarrow A^3=4-3A\)
=>A=1
c: \(C=1+\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(=1+3=4\)
a) \(H=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)
\(=\sqrt{81-17}=\sqrt{64}=8\)
b) \(K=\left(\sqrt{20}-3\sqrt{5}+\sqrt{80}\right).\sqrt{5}\)
\(=\sqrt{20}.\sqrt{5}-3\sqrt{5}.\sqrt{5}+\sqrt{80}.\sqrt{5}\)
\(=\sqrt{100}-3.5+\sqrt{400}=\sqrt{10^2}-15+\sqrt{20^2}\)
\(=10-15+20=15\)
\(H=\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
\(=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)
\(=\sqrt{9^2-\left(\sqrt{17}\right)^2}\)
\(=\sqrt{81-17}\)
\(=\sqrt{64}=8\)
\(K=\left(\sqrt{20}-3\sqrt{5}+\sqrt{80}\right)\cdot\sqrt{5}\)
\(=\sqrt{20}\cdot\sqrt{5}-3\sqrt{5}\cdot\sqrt{5}+\sqrt{80}\cdot\sqrt{5}\)
\(=\sqrt{20\cdot5}-3\sqrt{5\cdot5}+\sqrt{80\cdot5}\)
\(=\sqrt{100}-3\sqrt{25}+\sqrt{400}\)
\(=10-3\cdot5+20\)
\(=15\)