K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Ta có \(\sqrt[3]{26+15\sqrt{3}}=\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}\)

\(=\sqrt[3]{2^3+3.2^2\sqrt{3}+3.2.\left(\sqrt{3}\right)^2+\left(\sqrt{3}\right)^3}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}\)

\(=2+\sqrt{3}\)

Đặt \(x=\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)

Ta có \(x^3=\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)^3\)

\(=9+\sqrt{80}+9-\sqrt{80}+3.\left(\sqrt[3]{9+\sqrt{80}}\right)^2\left(\sqrt[3]{9-\sqrt{80}}\right)+3.\left(\sqrt[3]{9-\sqrt{80}}\right)^2\left(\sqrt[3]{9+\sqrt{80}}\right)\)

\(=18+3\sqrt[3]{9+\sqrt{80}}.\sqrt[3]{9-\sqrt{80}}\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)\)

\(=18+3\sqrt[3]{9^2-80}.x\)

\(=18+3x\)

Vậy \(x^3=18+3x\)

\(\Leftrightarrow x^3-3x-18=0\)

Vậy x = 3

Do đó \(M=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+3=2^2-3+3=4\)

Vậy M = 4.

23 tháng 9 2021

\(x=\dfrac{\sqrt[3]{\left(2+\sqrt{3}\right)^3}\left(2-\sqrt{3}\right)}{\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}}=\dfrac{1}{\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}}\)

Đặt \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)\(\Leftrightarrow A^3=18+3\sqrt[3]{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow A^3=18+3A\sqrt[3]{1}\\ \Leftrightarrow A^3-3A-18=0\\ \Leftrightarrow A=3\\ \Leftrightarrow X=\dfrac{1}{3}\\ \Leftrightarrow Q=\left[3\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{3}\right)^2-1\right]^{2021}=\left(\dfrac{1}{9}-\dfrac{1}{9}-1\right)^{2021}=\left(-1\right)^{2021}=-1\)

a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)

\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)

=7-2

=5

d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)

\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)

\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)

\(=4\sqrt{7}\)

21 tháng 7 2023

Nháp:

\(9\pm\sqrt{80}=9\pm4\sqrt{5}=\dfrac{72\pm32\sqrt{5}}{8}=\left(\dfrac{3\pm\sqrt{5}}{2}\right)^3\)

\(\Rightarrow \sqrt[3]{9+\sqrt{80}}=\dfrac{3+\sqrt{5}}{2}\)\(\Rightarrow \sqrt[3]{9-\sqrt{80}}=\dfrac{3-\sqrt{5}}{2}\)

\(S=\sqrt[3]{26+15\sqrt{3}}\left(2-\sqrt{3}\right)+\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\\ S=\sqrt[3]{\left(2+\sqrt{3}\right)^3}+\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\\ S=2+\sqrt{3}+\dfrac{3+\sqrt{5}}{2}+\dfrac{3-\sqrt{5}}{2}\\ S=2+\sqrt{3}+3\\ S=5+\sqrt{3}\)

25 tháng 8 2017

Đặt A = \(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)=> \(A^3=18+3A\Leftrightarrow A^3-3A-18=0\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\Leftrightarrow A-3=0\Leftrightarrow A=3\)

\(\dfrac{\sqrt[3]{26+15\sqrt{3}}\left(2-\sqrt{3}\right)}{\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}}=\dfrac{\sqrt[3]{\left(2+\sqrt{3}\right)^3}\left(2-\sqrt{3}\right)}{3}=\dfrac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{3}=\dfrac{1}{3}\)

a) Ta có: \(M=\dfrac{2}{\sqrt{7}-\sqrt{6}}-\sqrt{28}+\sqrt{54}\)

\(=\dfrac{2\left(\sqrt{7}+\sqrt{6}\right)}{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}-2\sqrt{7}+3\sqrt{6}\)

\(=2\sqrt{7}+2\sqrt{6}-2\sqrt{7}+3\sqrt{6}\)

\(=5\sqrt{6}\)

b) Ta có: \(N=\left(2-\sqrt{3}\right)\left(\sqrt{26+15\sqrt{3}}\right)-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\sqrt{27+2\cdot3\sqrt{3}\cdot5+25}-\left(2+\sqrt{3}\right)\sqrt{27-2\cdot3\sqrt{3}\cdot5+25}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\sqrt{\left(3\sqrt{3}+5\right)^2}-\left(2+\sqrt{3}\right)\sqrt{\left(3\sqrt{3}-5\right)^2}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)

\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-\left(6\sqrt{3}-10+9-5\sqrt{3}\right)}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}\)

\(=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

a: \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot A\cdot\sqrt[3]{4-5}\)

\(\Leftrightarrow A^3=4-3A\)

=>A=1

c: \(C=1+\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(=1+3=4\)