K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

$|x+2020|+|x+2021|=|x+2020|+|-(x+2021)|$

$\geq |x+2020-(x+2021)|=1$

Vậy GTNN của biểu thức là $1$. Giá trị này đạt tại $(x+2020).-(x+2021)\geq 0$

$(x+2020)(x+2021)\leq 0$

$-2021\leq x\leq -2020$

5 tháng 3 2022

hicc, mn help e lần này với ạ

5 tháng 3 2022

e đg thi hở , thoai hoc24 ko ủng hộ gian lận đc:(

NV
26 tháng 3 2023

10.

\(H\left(x\right)=-5x^4+10x^3-15x+1\)

\(=-5x\left(x^3-2x^2+3\right)+1\)

\(=-5x.0+1\)

\(=1\)

9.

\(P\left(x\right)-Q\left(x\right)=\left(1-a\right)x^3+x^2+x-6\)

\(P\left(x\right)-Q\left(x\right)\) là đa thức bậc 3 khi và chỉ khi \(1-a\ne0\)

\(\Rightarrow a\ne1\)

17 tháng 8 2019

Ta có:  \(14x=21y=16z\)=> \(\frac{x}{\frac{1}{14}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\) => \(\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}=\frac{2x+y-z}{\frac{1}{7}+\frac{1}{21}-\frac{1}{16}}=\frac{2}{\frac{43}{336}}=\frac{672}{43}\)

=> \(\hept{\begin{cases}\frac{x}{\frac{1}{14}}=\frac{672}{43}\\\frac{y}{\frac{1}{21}}=\frac{672}{43}\\\frac{z}{\frac{1}{16}}=\frac{672}{43}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{672}{43}.\frac{1}{14}=\frac{48}{43}\\y=\frac{672}{43}.\frac{1}{21}=\frac{32}{43}\\z=\frac{672}{43}.\frac{1}{16}=\frac{42}{43}\end{cases}}\)

Vậy ...

17 tháng 8 2019

\(\Rightarrow\frac{x}{\frac{1}{14}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\)

\(\Rightarrow\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\)

+ Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}=\frac{2x+y-z}{\frac{1}{7}+\frac{1}{21}-\frac{1}{16}}=\frac{2}{\frac{43}{336}}=\frac{672}{43}\)

Suy ra \(\frac{2x}{\frac{1}{7}}=\frac{672}{43}\Rightarrow x=\frac{48}{43}\)

              \(\frac{y}{\frac{1}{21}}=\frac{672}{43}\Rightarrow y=\frac{32}{43}\)

             \(\frac{z}{\frac{1}{16}}=\frac{672}{43}\Rightarrow z=\frac{42}{43}\)

Vậy \(x=\frac{48}{43};y=\frac{32}{43};z=\frac{42}{43}\)

Chúc bạn học tốt !!!

13 tháng 4 2023

`7,`

`a, B+A=4x-2x^2+3`

`-> B=(4x-2x^2+3)-A`

`-> B=(4x-2x^2+3)-(x^2-2x+1)`

`B=4x-2x^2+3-x^2+2x-1`

`B=(-2x^2-x^2)+(4x+2x)+(3-1)`

`B=-3x^2+6x+2`

`b, C-A=-x+7`

`-> C=(-x+7)+A`

`-> C=(-x+7)+(x^2-2x+1)`

`-> C=-x+7+x^2-2x+1`

`C=x^2+(-x-2x)+(7+1)`

`C=x^2-3x+8`

`c,`

`A-D=x^2-2`

`-> D= A- (x^2-2)`

`-> D=(x^2-2x+1)-(x^2-2)`

`D=x^2-2x+1-x^2+2`

`D=(x^2-x^2)-2x+(1+2)`

`D=-2x+3`

13 tháng 4 2023

`6,`

`a,`

`P+Q=4x-2x^2+3`

`-> Q=(4x-2x^2+3)-P`

`-> Q=(4x-2x^2+3)-(3x^2+x-1)`

`Q=4x-2x^2+3-3x^2-x+1`

`Q=(-2x^2-3x^2)+(4x-x)+(3+1)`

`Q=x^2+3x+4`

`b,`

`x^2-5x+2-P=H`

`-> H= (x^2-5x+2)-(3x^2+x-1)`

`H=x^2-5x+2-3x^2-x+1`

`H=(x^2-3x^2)+(-5x-x)+(2+1)`

`H=-4x^2-6x+3`

`c,`

`P-R=5x^2-3x-4`

`-> R= P- (5x^2-3x-4)`

`-> R=(3x^2+x-1)-(5x^2-3x-4)`

`R=3x^2+x-1-5x^2+3x+4`

`R=(3x^2-5x^2)+(x+3x)+(-1+4)`

`R=-2x^2+4x+3`

30 tháng 9 2024

    Các em đăng câu hỏi lên diễn đàn thì cần đăng đầy đủ nội dung câu hỏi lên trên này. Có như vậy mọi người mới biết yêu cầu của đề bài và trợ giúp các em tốt nhất. Cảm ơn các em đã đồng hành cùng Olm. 

13 tháng 10 2021

a) \(\Rightarrow\left(x-3\right)\left(x+4\right)=5.12\)

\(\Rightarrow x^2+x-72=0\)

\(\Rightarrow\left(x-8\right)\left(x+9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-9\end{matrix}\right.\)

b) \(\Rightarrow\left(x+3\right)^2=36\)

\(\Rightarrow\left[{}\begin{matrix}x+3=6\\x+3=-6\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-9\end{matrix}\right.\)

c) \(\Rightarrow2x^2=8\Rightarrow x^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

13 tháng 10 2021

em cảm ơn nhiều ạ!

 

22 tháng 10 2021

\(\dfrac{x}{y}=\dfrac{5}{2}\) ⇒\(\dfrac{x}{5}=\dfrac{y}{2}\)

\(\dfrac{y}{z}=\dfrac{1}{3}\) ⇒\(\dfrac{y}{1}=\dfrac{z}{3}\) ⇒\(\dfrac{y}{2}=\dfrac{z}{6}\)

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{6}\) ⇒\(\dfrac{x^2}{25}=\dfrac{y^2}{4}=\dfrac{2z^2}{72}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{25}=\dfrac{y^2}{4}=\dfrac{2z^2}{72}=\dfrac{x^2-y^2+2z^2}{25-4+72}=\dfrac{372}{93}=4\)

\(\left\{{}\begin{matrix}x=4.5=20\\y=4.2=8\\z=4.6=24\end{matrix}\right.\)

22 tháng 10 2021

em cảm ơn ạ

 

Bạn cần bài nào ạ? Nếu bạn cần giúp tất cả thì bạn tách ra từng CH khác nhau nhé!

27 tháng 10 2019

Câu nào đấy ạ :)

28 tháng 2 2021

BÀI TOÁN ĐÂU EM :))