K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2023

a: \(3abc^3-6a^2b^3c+12a^3bc\)

\(=3abc\cdot c^2-3abc\cdot2ab^2+3abc\cdot4a^2\)

\(=3abc\left(c^2-2ab^2+4a^2\right)\)

b: \(27-8y^3\)

\(=3^3-\left(2y\right)^3\)

\(=\left(3-2y\right)\left(9+6y+4y^2\right)\)

c: Sửa đề: \(4x^2+4x-y^2+1\)

\(=\left(4x^2+4x+1\right)-y^2\)

\(=\left(2x+1\right)^2-y^2\)

\(=\left(2x+1+y\right)\left(2x+1-y\right)\)

d: \(3a^2\cdot\left(x-2\right)-6ab\cdot\left(2-x\right)\)

\(=3a^2\cdot\left(x-2\right)+6ab\cdot\left(x-2\right)\)

\(=\left(x-2\right)\left(3a^2+6ab\right)\)

\(=3a\left(a+2b\right)\left(x-2\right)\)

27 tháng 11 2018

a) 1 - 2y + y2

= (1-y)2

b) ( x + 1 )- 25

=( x + 1 )- 52

=(x+1+5)(x+1-5)

27 tháng 11 2018

c) 1 - 4x2

= 1- 2x2

=(1-2x)(1+2x)

12 tháng 8 2015

a) x^4 - x^3 - x + 1 

= x^3 ( x - 1 ) - ( x- 1 )

= ( x^3 - 1 )(x - 1)

= ( x- 1 )^2 (x^2 + x +  1 )

 

12 tháng 8 2015

a)x4-x3-x+1

=x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)(x-1)(x2+x+1)

=(x-1)2(x2+x+1)

b)5x2-4x+20xy-8y

(sai đề)

 

\(a)\)

\(4x^2-y^2+2x+y\)

\(=\left(4x^2-y^2\right)+\left(2x+y\right)\)

\(=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)\)

\(=\left(2x+y\right)\left(2x-y+1\right)\)

\(b)\)

\(x^3+2x^2-6x-27\)

\(=x^3+5x^2+9x-3x^2-15x-27\)

\(=x\left(x^2+5x+9\right)-3\left(x^2+5x-9\right)\)

\(=\left(x-3\right)\left(x^2+5-9\right)\)

\(c)\)

\(12x^3+4x^2-27x-9\)

\(=\left(12x^3+4x^2\right)-\left(27x+9\right)\)

\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)

\(=\left(3x+1\right)\left(4x^2-9\right)\)

\(=\left(3x+1\right)[\left(2x\right)^2-3^2]\)

\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)

\(d)\)

\(16x^2+4x-y^2+y^2\)

\(=16x^2+4x\)

\(4x\left(4x+1\right)\)

9 tháng 8 2019

11, 8a3-12a2+6a-1 = ( 2a - 1 )\(^3\)

12, x3+12x2+48x+64 = ( x + 4 )\(^3\)

13, a3+b3+c3-3abc = ( a + b + c ) ( a\(^2\) + b\(^2\) +c\(^2\) - ab - bc - ca )

15, 4x4+1 = ( 2x\(^2\) + 1 ) ( 2x\(^2\) - 1 )

9 tháng 8 2019

câu 15 là sai, quá sai :v

9 tháng 8 2019

11.\(8a^3-12a^2+6a-1=\left(3a-1\right)^3\)

12.\(x^3+12x^2+48x+64=\left(x+4\right)^3\)

13.\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

14.\(a^3-b^3+c^3+3abc\)

\(=\left(a-b\right)^3+3ab\left(a-b\right)+c^3+3abc\)

\(=\left(a-b+c\right)\left[\left(a-b\right)^2+\left(a-b\right)c+c^2\right]+3ab\left(a-b+c\right)\)

\(=\left(a-b+c\right)\left(a^2-2ab+b^2+ac-bc+c^2\right)+3ab\left(a-b+c\right)\)

\(=\left(a-b+c\right)\left(a^2+b^2+c^2+ab-bc+ac\right)\)

15.\(4x^4+1=4x^4+4x^2+1-4x^2\)

\(=\left(2x^2+1\right)^2-4x^2\)

\(=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)\)

16.\(4x^4+y^4=4x^4+4x^2y^2+y^4-4x^2y^2\)

\(=\left(2x^2+y^2\right)^2-4x^2y^2\)

\(=\left(2x^2-2xy+y^2\right)\left(2x^2+2xy+y^2\right)\)

17.\(x^4+324=x^4+36x^2+18^2-36^2\)

\(=\left(x^2+18\right)^2-36x^2\)

\(=\left(x^2+6x+18\right)\left(x^2-6x+18\right)\)

18.\(x^5+x+1=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

19.\(x^{11}+x+1=x^{11}-x^8+x^8-x^5+x^5-x^2+x^2+x+1\)

\(=x^8\left(x^3-1\right)+x^5\left(x^3-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^8\left(x-1\right)\left(x^2+x+1\right)+x^5\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)

20.\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2\)

\(=\left[\left(x-3\right)\left(x-10\right)\right]\left[\left(x-5\right)\left(x-6\right)\right]-24x^2\)

\(=\left(x^2-13x+30\right)\left(x^2-11x+30\right)-24x^2\)

Đặt \(t=x^2-11x+30\) thay vào phương trình ta được:

\(\left(t-2x\right).t-24x^2\)

\(=t^2-2tx-24x^2\)

\(=t^2+4tx-6tx-24x^2\)

\(=t\left(t+4x\right)-6x\left(t+4x\right)\)

\(=\left(t+4x\right)\left(t-6x\right)\)

\(=\left(x^2-11x+30+4x\right)\left(x^2-11x+30-6x\right)\)

\(=\left(x^2-7x+30\right)\left(x^2-17x+30\right)\)

9 tháng 8 2019

11)

Áp dụng hằng đẳng thức:

=(2a-1)3

5 tháng 9 2018

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Ta có :

\(a^3+b^3+c^3-3abc\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

P/s tham khảo nha

hok tốt

1 tháng 10 2016

a)

\(x^5+x^3-x^2-1\)

\(=x^3\left(x^2+1\right)-\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^3-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x^2+x+1\right)\)

b)

\(x^2-3x^3-x+3\)

\(=x\left(x-1\right)-3\left(x^3-1\right)\)

\(=x\left(x-1\right)-3\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x-3x^2-3x-3\right)\)

\(=\left(x-1\right)\left(-3x^2-2x-3\right)\)

c)

\(x^2-6x+8\)

\(=x^2-2.x.3+9-1\)

\(=\left(x-3\right)^2-1\)

\(=\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x-4\right)\left(x-2\right)\)

d)

\(4x^4-4x^2y^2-8y^4\)

\(=\left(2x^2\right)^2-2.\left(2x^2\right)y^2+y^2-9y^4\)

\(=\left(2x^2-y\right)^2-\left(3y^2\right)^2\)

\(=\left(2x^2-y-3y^2\right)\left(2x^2-y+3y^2\right)\)

1 tháng 10 2016

a,nhóm x*5 với x*3,x*2 và 1:   (x*5+ x*3) - (x*2+1) =x*3.(x*2+1)-(x*2+1) =.....,  câu b nhóm x*2 và -3x*3,x và 3,    câu c bang (x-3)*2-1 =..., câu d đat 4 ra.

1 tháng 10 2016

a) \(x^5+x^3-x^2-1=x^3\left(x^2+1\right)-\left(x^2+1\right)=\left(x^3-1\right)\left(x^2+1\right)\)

b) \(x^2-3x^3-x+3=x\left(x-1\right)-3\left(x^3-1\right)=x\left(x-1\right)-3\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left[\left(x-3\right)-\left(x^2+x+1\right)\right]=\left(x-1\right)\left(-x^2-4\right)\)c) \(x^2-6x+8=x^2-6x+9-1=\left(x-3\right)^2-1=\left(x-2\right)\left(x-4\right)\)

d) \(4x^4+4x^2y^2-8y^4=4x^4+4x^2y^2+y^4-9y^4=\left(2x^2+y^2\right)^2-9y^4=\left(2x^2+4y^2\right)\left(2x^2-2y^2\right)=2\left(x^2+2y^2\right)2\left(x^2-y^2\right)=4\left(x^2+2y^2\right)\left(x+y\right)\left(x-y\right)\)

30 tháng 10 2016

\(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

\(x^6-x^4-9x^3+9x^2\)

\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)

\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)

\(x^4-4x^3+8x^2-16x+16\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)\)

\(=\left(x^2+4\right)\left(x^2+4-4x\right)\)

\(=\left(x^2+4\right)\left(x-2\right)^2\)

\(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2-4c^2\right)\)

\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)

\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)

30 tháng 10 2016

cảm ơn bạn nha!eoeo