K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

Ta Có : \(a^3+b^3+c^3-3abc \)

\(=\left(a+b\right)\left(a^2+ab+b^2\right)+c\left(c^2-3ab\right)\)

\(=a^3+3a^2b+ab^2+b^3+c^3-3abc-3a^2b-3ab^2\)

\(=\left(a+b\right)^3+c^3-3abc\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2-ab+b^2-ac-bc+c^2\right)\)

 

13 tháng 11 2021

\(a^3+b^3-c^3+3abc\)

\(=a^3+3ab.\left(a+b\right)+b^3-c^3-3abc-3ab.\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab.\left(a+b-c\right)\)

\(=\left(a+b+c\right).\left(a^2+ab+b^2-ab-ac+c^2\right)-3ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)

7 tháng 7 2016

a3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc

=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)

=(a+b+c)(a2+b2+c2-ac-bc-ab)

27 tháng 9 2019

\(a^3+b^3+c^3-3abc\)

\(=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b\right)^3+c^3-\left(3a^2b+3ab^2+3abc\right)\)

\(=\left(a+b+c\right)[\left(a+b\right)^2-c\left(a+b\right)+c^2]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-ab\right)\)

27 tháng 9 2019

a3+b3+c3−3abca^3+b^3+c^3-3abca3+b3+c3−3abc

=a3+3a2b+3ab2+b3+c3−3a2b−3ab2−3abc=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc=a3+3a2b+3ab2+b3+c3−3a2b−3ab2−3abc

=(a+b)3+c3−(3a2b+3ab2+3abc)=\left(a+b\right)^3+c^3-\left(3a^2b+3ab^2+3abc\right)=(a+b)3+c3−(3a2b+3ab2+3abc)

=(a+b+c)[(a+b)2−c(a+b)+c2]−3ab(a+b+c)=\left(a+b+c\right)[\left(a+b\right)^2-c\left(a+b\right)+c^2]-3ab\left(a+b+c\right)=(a+b+c)[(a+b)2−c(a+b)+c2]−3ab(a+b+c)

=(a+b+c)(a2+2ab+b2−ac−bc+c2)−3ab(a+b+c)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=(a+b+c)(a2+2ab+b2−acbc+c2)−3ab(a+b+c)

=(a+b+c)(a2+2ab+b2−ac−bc+c2−3ab)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=(a+b+c)(a2+2ab+b2−acbc+c2−3ab)

=(a+b+c)(a2+b2+c2−ab−ac−ab)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-ab\right)=(a+b+c)(a2+b2+c2−abacab)

12 tháng 8 2015

sai đề !!!!! phân tích thành nhân tử sao có dấu "="       

18 tháng 3 2017

cái thứ nhất -3(a+b)(b+c)(c+a)

cái thứ hai 0

18 tháng 3 2017

cái thứ 2 bằng (c+b+a). (a^2+b^2+c^2-ab-ac-ca)

14 tháng 2 2018

           \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+\right)\left(a^2+2ab+b^2-ac-bc +c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

14 tháng 2 2018

\(=a^3+3ab\left(a+b\right)+b^3+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

3 tháng 8 2019

Đặt \(f=a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-a-b\right)\)

\(=3abc+a^3+b^3+c^3-a^2b-b^2a-a^2c-b^2c-c^2a-c^2b\)

\(=a^2\left(a-b\right)+b^2\left(b-a\right)+c\left[2ab-a^2-b^2+c\left(c^2-bc-ac+ab\right)\right]\)

\(=\left(a-b\right)\left(a^2-b^2\right)-c\left(a-b\right)^2+c\left(c-a\right)\left(c-b\right)\)

\(=\left(a-b\right)^2\left(a+b+c\right)+c\left(b-c\right)\left(a-c\right)\)

\(\Rightarrow BT=\left(a-b\right)^2\left(a+b+c\right)+c\left(b-c\right)\left(a-c\right)-c\left(b-c\right)\left(a-c\right)\)

\(=\left(a+b\right)^2\left(a+b+c\right)\)

6 tháng 10 2018

       \(3a^2c^2+bd+3abc+acd\)

\(=\left(3a^2c^2+3abc\right)+\left(acd+bd\right)\)

\(=3ac\left(ac+b\right)+d\left(ac+b\right)\)

\(=\left(ac+b\right)\left(3ac+d\right)\)

7 tháng 10 2018

 ta có: ab(a + b) + bc(b + c) + ac(a + c) + 3abc 

= ab(a + b) + abc + bc(b + c) + abc + ac(a + c) + abc 

= ab(a + b + c) + bc(a + b + c) + ac(a + b + c) 

= (a + b + c)(ab + bc + ca)